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INTRODUCTION 

One of the fastest growing areas of inorganic chemistry is the in­

vestigation of compounds involving metal-metal bonds. This dissertation 

covers investigations into two widely differing types of compounds, 

salts containing post-transition metal polyatomic or cluster anions and 

early transition metal subhalides, both of which exhibit metal-metal 

bonding. 

At present there is no review of the homopolyatomic anion species 

available, however Corbett has recently reviewed the homopolyatomic 

cations of the post-transition elements,^ many of which are isostruc­

tural and isoelectronic with known anion species. Schafer, Eisenmann, 

and Millier have reviewed the structure and bonding of the "Zintl 

2 
Phases", a name which they apply to all compounds of the alkali and 

alkaline earth elements. In many of these compounds the more electro­

negative atom, the post-transition element, forms a homoatomic cluster 

or chain although few of these clusters can be considered discrete 

anions due to the extreme charge transfer this would require. 

The earliest report of a post-transition metal polyanion species 

came from Joannis who produced an intensely green solution by the 

3 
reaction of lead and sodium in liquid ammonia. By the time the correct 

stoichiometry of this compound, NaPbg 25 (Na^Pbg), was established 

electrochemically by Smyth 60 years ago, similar solvated species were 

4 
already known for antimony, bismuth, mercury, and tin. 
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Although there are several reports in the early literature of the 

formation of uncharacterized red or purple polytelluride species by oxi­

dation of the telluride(2-) ion in aqueous base^ or by solution of the 

element in hydrogen telluride,^ the first systematic investigation was 

carried out by Kraus and Chiu.^ Their experiments involved the disso­

lution of a weighed stick of tellurium in a liquid ammonia solution 

containing a known quantity of sodium. The stoichiometry of the solution 

was determined by weighing the remaining portion of the tellurium stick. 

2-
Their results indicated three tellurides; Te , which was only slightly 

2-
soluble, producing a yellow solution, Te^ , which forms a clear blue 

2-
solution, and Te^ , the ion in equilibrium with excess tellurium, which 

forms a clear red solution. The dinegative nature of the anions was 

g 
determined by vapor pressure measurements. 

Zintl, Goubeau, and Dullenkopf found these three ions, and the deep 

2-
red Te^ also, through potentiometric titrations as part of an extensive 

investigation of the electrochemistry of polyanions of the post-

9 
transition elements in liquid ammonia. While the three most reduced 

species were found reproducibly in both of the published titrations, the 

2-
tetratelluride, Te^ , was only observed once. 

Neither group of investigators succeeded in obtaining any solid 

polytellurides, both reporting only the recovery of one of the known 

sodium tellurium intermetallic phases, a mixture of known compounds, or 

a mixture including tellurium. 

All of these early experiments have two things in common, the 

intricacy of apparatus used and the ingenuity of manipulations which were 
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required to work with these very air sensitive compounds before the ad­

vent of modern dryboxes and ground glass joints. 

Before the present work was begun, the only polytelluride ion 

2_ 
structurally characterized was the ditelluride ion, Te^ , such as found 

in MgTe^, which has the pyrite structure,while for both sulfur and 

2- 2-
selenium the trichalcide ions, and Se^ are known in the solid 

Although the tritelluride ion was not known in the solid state, the 

isoelectronic species, has been deduced in the compound I^AICI^ by 

13 
Merryinan and coworkers and characterized by NQR spectrometry. It will 

2- 3+14 
be shown that, as in the case of Pb^ and Bi^ , the isoelectronic 

2- + 
species Te^ and are also isostructural. 

While this study was in progress, the structure of In^Te^ was re-

15 2-
ported. This compound contains Te^ groups, but they are not isolated 

polyanions, having Te-In distances shorter than the Te-Te distances. 

The earliest systematic investigation of polybismuth anions came 

from Zintl et al., who found evidence for the existence of two anions, 

3- 3-
violet colored Bi^ and brown Bi^ , by potentiometric titration of 

9 
liquid ammonia solutions of sodium with Bil^ and a third, yellow-brown 

Biy^ , by exhaustive extraction of bismuth-rich (Bi:Na:;3:l) alloys for 

.  .  -  . 1 6  
a perioa oi moncns. 

As has already been noted^^ the identification of the last species 

as Biy^ appears questionable. The conclusion was based on the analyt­

ical result Na^Big (or approximately Na^Bi^) which was presumed to 

indicate a mixture of Na^Bi^ and Na^Biy in solution on the grounds that 
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no other group V anion had been observed with an even number of atoms 

and that all appeared to be trinegative. However, if the analysis is 

taken to be correct, the resulting formulation could represent 1.5 Na^Bi^ 

2-
and indicate that the solution species was Bi^ , isoelectronic with the 

2+ 18 
known Te^ . The polybismuthide anion characterized in this work 

indicates that this postulate does indeed appear likely and that the 

2- 17 
Bi^ anion has the predicted square planar structure. 

There are two recent reports of uncharacterized polybismuthide 

species. In one, green and rose colored microcrystals are reported to 

form on evaporation of solvent from the dichroic green-red solution 

formed by the equilibration of either NaBi or NaBi + Bi and crypt (see 

19 
below for the meaning of this name) in ethylenediamine. In the other, 

a brown solution is reported after equilibrating a mixture (composition 

20 
NaBig) with ethylenediamine for several months. 

Recently there have been several reports of the isolation and 

characterization of "Zintl ions" in the solid state. In all except one 

21 
of these reports, the key to the formation of a stable and tractable 

22 
product has been the use of 2,2,2-crypt to complex the alkali metal 

counter ion. This compound (see Figure 1), the correct systematic name 

of which is 4,7,13,16,21,24-hexaoxa-l,10-diazabicyclo[8.8.8]hexacosane 

(N(C2H^CC2H^0C2H^)3N), is one 01 a group oi cage-iitcc poj.ycyciic amine 

23 
ethers. Many of these compounds complex alkali and alkaline earth 

ions extremely well, with a very strong size effect, each compound 

complexing one alkali metal ion an order of magnitude better than any 

of the others. Because 2,2,2-crypt is commercially available at a price 
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Figure 1. A potassium ion complexed by a molecule of 

4,7,13,16,21,24-hexaoxa-1,10,-diazabicyclo[8.8.8]-

hexacosane (2,2,2,-crypt). The shaded atoms are the 

six ether oxygens (along the chains) and two tertiary 

amine nitrogens (at the bridgeheads) which coordinate 

to the potassium (at the center). When the volume 

occupied by the 36 hydrogen atoms (not shown) is 

included this spherical complex cation has an appro-

o 
ximate radius of 5.5A. 
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significantly below any of the other ligands, it was the compound of 

choice, and because its most stable complex (for a monovalent ion) is 

24 
formed with potassium, this element was chosen as the cation. 

The use of crypt to complex the cation promotes the formation of 

crystalline polyanion salts in two ways. First is an increase in 

solubility. Intermetallic compounds which dissolve in 

pure ethylenediamine dissolve faster with crypt present, and many com­

pounds which are insoluble in pure solvent, such as KBi^, readily form 

solutions when crypt is present. The second effect is to furnish an 

energetically favorable alternative to the intermetallic compound in the 

solid state. Clearly the intermetallic compound with relatively smal] 

charge separations, few if any like-charged nearest neighbors, and some 

degree of electron delocalization has more binding energy than a compound 

containing a larger complex discrete polyanion which would yield a low 

Madelung energy and would require either cation-cation contacts or a 

very open structure. With the use of crypt to complex the cation the 

complexation energy replaces the binding energy lost with the increase in 
O 

metal atom separations and the increased cationic radius (5.5A instead of 

" 25 
1.3A in the case of potassium ) easily keeps the polyanions separated. 

2- 3- 2- 4- 2-
To date, six "Zintl ions", Pb^ , Sb^ , Sn^ , Sn^ , Ge^ 

27 
and GCg ~, have been Isolated as the salts cf cryptate cations and 

characterized crystallographically. The work described in this disser­

tation includes the synthesis and crystal structures of two more such 

2- 2-
species, Te^ and Bi^ . Much of this material has already been pub­

lished. 
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4-
One of the above ions, Sn^ has also been isolated as the salt of 

20 
sodium complexed by ethylenediamine. This last complex is far less 

stable than any of the cryptate salts, all of which are very air 

sensitive and many of which decompose under x-ray exposure. 

There are five zirconium chlorides known, with oxidation states 

30 
ranging from four down to one. Of these, the white insulating ZrCl^, 

which consists of chains of octahedra sharing two non-opposing edges, 

is the only one not exhibiting some form of metal-metal bonding. 

The trichloride is the most studied of the reduced chlorides, 

accounting for virtually all of the early reports in this area. This 

olive-green compound, like the tribromide and triiodide, consists of 

chains of octahedrally coordinated zirconium atoms joined together by 

31,32 
sharing opposite faces of the octahedra. ' With a metal-metal 

O 
distance of 3.067A along the chain, this diamagnetic semiconductor 

definitely has metal-metal bonding along the chain. This compound is 

33 
nonstoichiometric, with a range from ZrCl^ to ZrCl_ A shear 

j.vj 

mechanism has been advanced by Copley and Shelton to explain the 

34 
substoichiometry. Although this may explain the non-stoichiometry 

near ZrCl^ qq, their suggestion that this mechanism applies for the 

reduction all the way to a composition of ZrCl^ ^ is definitely incor­

rect. Daake has shown that this reduction leads co ZrCl^, with a two 

30 
phase region between ZrCl2 and ZrClg. 

The compound Zr^Cl^^ has only been found as isolated crystals 

grown along with other compounds in transport reactions. It is iso-

structural with Ta^Cl^^, having isolated octahedra, with chlorine 
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atoms bridging all of the edges and the clusters linked by chlorine 

bridging from a vertex on one cluster to a vertex on an adjacent 

30 
cluster. 

Zirconium monochloride was first prepared by the electrochemical 

35 
reduction of zirconium in a SrClg-NaCl-ZrCl^ melt (63:34:3). Struss 

and Corbett report the production of this compound by the reduction of 

36 
ZrCl^ with an excess of zirconium foil. A modification of this 

procedure has made it possible to produce this stoichiometric compound 

in quantity for use as a reductant, a role in which it has proven far 

30 
more facile than metallic zirconium. 

The monochloride, which is a metallic conductor with very aniso­

tropic electrical properties, has a slab-type structure with four close-

packed layers (Cl-Zr-Zr-Cl) in each slab and three slabs in each 

37 
repeating sequence. Although this was the first compound found 

possessing this double metal layer structure, several other monohalides 

(ZrBr, ScCl; HfCl, GdCl, and TbCl) have recently been found to also 

38 
have this type of structure. 

Zirconium dichloride was first reported by Ruff and Wallstein in 

1923 as a product of either the disproportionation of the trichloride or 

the reduction by aluminum of the tetrachloride. They described it as 

. 3 39 
an amorphous, air sensitive black compound with a density of 3.6 g/cm . 

Until recently most references treated the compound as the stoichiometric 

40-46 30,34 
result of the disproportionation of ZrClg. Two reports 

describe the dichloride as non-stoichiometric with the limiting reduced 

composition about ZrCl^ and Daake has suggested that the oxidized 
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limit for the "dichloride" with the same powder pattern as observed in 

this work may be as low as ZrCl^ 75*^^ 

Swaroop and Flengas have reported the synthesis af anhydrous ZrCl^ 

by the reduction of the trichloride with an excess of finely divided 

metal at 675° in a quartz tube lined with 10 mil Pt foil. After two 

reactions their platinum linings were so badly attacked as to be unusable. 

Although their analytical data appear to indicate a composition of 

47 
ZrCl2 and they describe their product as an air sensitive black powder, 

the material produced definitely was not ZrCl2« As can be seen in 

Table I, the powder pattern they report for their product is virtually 

identical to that of Baddeleyite, the low temperature form of ZrOg. At 

first it might seem that this is simply a result of poor sample handling, 

with the oxide being the result of the decomposition of the chloride in 

air. This is clearly not the case, as the pattern obtained was too sharp 

for the material to have been formed at low temperature, indicating that 

the oxide was formed during the initial synthesis. 

Struss and Corbett were the first to report a powder pattern for 

36 
ZrCl2 which agrees with the results in this work. This pattern was 

confirmed by Troyanov and Tsirel'nikov, who reported ZrClg to be iso-

48 
structural with the isoelectronic 3R-M0S2. They deduced this structure 

using film data from a non-single crystal produced by a controlled 

disproportionation of ZrCl^. They did not fully refine the structure 

(the reported R factor was 28%) or offer any explanation for the devi­

ation of their material (which analyzed as ZrCl^ g^) from the 2:1 
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Table I. Comparison of the powder patterns of Swaroop and Flengas's 
"ZrClg" with that of ZrOg 

"ZrCl^"^ Zr02^ 

o o 

H
 

M
 

O
 d(A) d(A) 

20 5.067 5.036 6 

40 3.686 3.690 18 

3.630 14 

100 3.164 3.157 100 

80 2.844 2.834 65 

60 2.630 2.617 20 

2.598 12 

20 2.535 2.538 14 

2.488 4 

10 2.332 2.328 6 

2.285 2 

40 2.206 2.213 14 

2.182 6 

10 2.015 2.015 8 

40 2.008 1.989 8 

40 1.855 1.845 18 

40 1.817 1.818 12 

1.801 12 

10 1.750 1.780 6 

20 1.701 1.691 14 

40 1.660 1.656 14 

From reference 47. 

From reference 49. 
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Table I (Continued) 

"ZrCl^"^ ZrO,^ 
' 2  

I/I d(A) d(A) I/I 

1.640 8 

20 1.618 1.608 8 

10 1.593 1.591 4 

1.581 4 

30 1.551 1.541 10 

10 1.516 1.508 6 

20 1.482 1.495 10 

1.476 6 

10 1.455 1.447 4 

30 1.427 1.420 6 

10 1.389 

10 1.368 1.358 2 

1.348 2 

30 1.331 1.321 6 

10 1.310 1.309 2 

1.298 2 

30 1.274 1.269 2 

20 1.252 1.261 2 

stoichiometry of the ideal structure beyond the suggestion of unspecified 

"crystal defects". 

In this work the structures of the two types of zirconium dichloride 

will be examined, as well as the mechanism for nonstoichiometry in the 

slab type dichloride. The recent volume by Hulliger^^ is a good source 
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for an explanation of the peculiar nomenclature of slab type compounds 

(such as 3R-M0S2) and a review of the many known structures of the early 

transition metal dichalcides. 



www.manaraa.com

14 

EXPERIMENTAL PROCEDURE 

Because of the air-sensitive nature of the compounds used in this 

research, all manipulations were carried out utilizing either a drybox 

or high vacuus line. All of the dryboxes used had inert atmospheres of 

nitrogen and were continuously purged. Dryness was maintained in the 

range of 6 to 20 ppm water vapor by recirculating the gas through a 

column of dried Molecular Sieve with a squirrel cage fan and exposing 

the atmosphere to an open container of phosphorus pentoxide. 

Standard vacuum line techniques were used for the manipulations 

carried out on the vacuum line. For a good description of such tech­

niques the book by Shriver should be consulted. 

Preparation of the polyanionic salts 

There are three compounds reported in the potassium-tellurium 

system, the normal telluride, K^Te, which has the antifluorite structure 

O 
(a^ = 8.168A), and two tellurium rich compounds, K2TG2 b°th 

52 
of which possess more complex but unknown structures. Two of these, 

K^Te and KgTGg, were synthesized and used in this study. 

y^Te was synthesized from potassium (J. T. Baker, "purified") and 

tellurium (United Mineral and Chemical, 99.999%) using the method 

described by Klemm in which the product precipitates from a liquid 

53 
ammonia solution of potassium when it reacts with tellurium. 

Although this source describes the compound as pale yellow, in this 
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study, it was found to be snow white when pure but darkening to pale 

yellow on handling in a drybox. This difference is probably due to the 

improvement in the quality of the starting materials available during 

the intervening 40 years, with the white color being correct. 

KgTe^ was produced by combining stoichiometric quantities of KgTe 

and tellurium in a porcelain crucible sealed inside an evacuated Vycor 

jacket. This apparatus was heated to 500° for 0.5 h and then to 700° 

for an additional 0.5 h. The resulting friable, silvery grey solid 

(which had been molten at 700°) showed no evidence of the starting 

materials in its powder pattern (Cebye-Scherrer). 

There are four compounds known in the potassium-bismuth system; 

O 
KgBi, which has the Na^As structure (hexagonal, a = 6.190A, c = 

°v 54 
10.955A), K2Bi2, K^Bi^, and KBig, which has the MgCu^ structure 

° 55 
(cubic, a^ = 9.501A). All four were prepared by fusing together 

stoichiometric amounts of the elements (bismuth. Oak Ridge National 

Laboratory, 99.999%) in sealed tantalum tubes, a method found satis­

factory in a previous study.For K^Bi and KBi^, which melt congruently 

at 671° and 565° respectively, a single heating to 700° followed by slow 

cooling was sufficient to produce a thoroughly crystalline product. 

With KgBi^, which melts barely congruently at 442°, annealing for 16 

hours just below the melting point was added to the above procedure. The 

remaining compound, K^Bi^, melts incongruently at 381°. It was pro­

duced by initially heating the reactants to 700° to give a homogeneous 

melt, then equilibrating the material at 440° (above the point where the 

first solid nucleates) for several hours, quenching to near room temper-



www.manaraa.com

15 

atiire, and then annealing at 375° for ten days. 

The compounds are all friable and range in color from metallic 

green for K^Bi, through bluish-silver for K^Bi^ and K_Bi^, both of which 

develop a golden surface coating after handling in the drybox, to silver 

for KBi^. Purity was established through Debye-Scherrer powder 

patterns. 

Ethylenediamine (en) was dried by stirring over CaEg for about two 

days followed by refluxing at reduced pressure over fresh CaH^ for 24 h 

and distillation onto dried Molecular Sieve for storage. For use in a 

reaction the solvent was distilled directly from the storage flask to 

the reaction vessel using a room temperature to ice water temperature 

gradient. 

Liquid ammonia was dried by storage for several days as a liquid 

ammonia solution of sodium. For use in a reaction the ammonia was 

distilled into the reaction vessel through a trap, a glass wool filter, 

or both to prevent the entrainment of the fine particles of sodium 

formed by either boiling the liquid solution or subliming the ammonia 

from the frozen solution. 

The 2,2,2-crypt (Merck) was used as received from E. M. Labora­

tories and was handled only in the drybox. 

A sketch of a typical apparatus used in the synthesis of the 

+ 2-
polyanionic salts appears in Figure 2. To produce (crypt K )2'^®3 

stoichiometric quantities of K^Te and crypt (0.03 and O.lOg respectively) 

were combined with an excess (0.2-0.3g) of tellurium in section A of 

the apparatus, the entire apparatus evacuated to below discharge, 40 
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JË 
TEFLON 
NEEDLE VALVES 

f ) 
SECTION B 
20 mm DIAMETER 

SECTION A 
30 mm DIAMETER 

I 

General design for the apparatus used in the synthesis 

of (crypt K)2Te2*en and (crypt KjgBi^. All of the Teflon 

needle valves used had 4 mm bores. 
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to 50 mL of en distilled in, and the mixture allowed to warm to room 

temperature. The immediate result was a green solution (from the 

2- 2-
mixture of yellow Te and blue Te^ ) which over a period of three 

2- 2- 2-
days became blue (Teg ), then purple (a mixture of Te^ and red Te^ ) 

2-
and finally a deep clear red (Te^ ) which did not change on further 

standing. The solution was decanted into section B and away from the 

excess tellurium, and the deep red hexagonal and triangular crystals 

grown by evaporation of the solvent. Crystals up to several millimeters 

on an edge could be obtained by reducing the rate of solvent evaporation. 

The same deep clear red solution obtained from the above reaction 

was obtained in minutes with no hint of either other colors or undis­

solved solids by condensing en onto a stoichiometric mixture of crypt and 

K^Te^. If crypt is omitted and only KgTe and tellurium reacted in en 

the same series of colors is observed, but solvent evaporation yields 

only a pasty, non-crystalline purplish red sludge. 

If sodium is substituted for potassium the same sequence of colors 

is observed with the same sequence of ions presumably formed. No effort 

was made to characterize this system however because of the greater 

stability of the potassium-crypt complex and the superior crystals for 

the potassium salt. 

When liquid ammonia (£ NH^) is used as the solvent, the same series 

of colors is again observed, however evaporation at low temperature 

(Jl bath, approximately -40°) produces only a dark red powder. When 

the evaporation is carried on at room temperature crystals result, but 

all of those examined have proven to be non-single. The powder 
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pattern of this material differs drastically from that calculated for 

+ 2-
(crypt K )2^®3 'en. 

+ 2-
The tetrabismuthide salt, (crypt K Bi^ , is the unique crystal­

line product when any of the compounds in the potassium-bismuth system 

or mixtures of them are reacted with crypt in en at room temperature. 

In a typical reaction stoichiometric amounts of the intermetallic 

compound and crypt are loaded into section A of the same type of vessel 

as used in the telluride reaction, the vessel is evacuated and the 

solvent distilled in. The exact course the reaction follows after this 

depends on which starting compound has been used. 

The fastest reaction is observed with either of the intermediate 

compositions in the system. This probably results because these inter­

metallic compounds are the least stable of the four, as indicated by 

their lower melting points. 

After condensing the solvent, a deep clear green solution rapidly 

forms and after standing overnight at room temperature the solution is 

intensely colored and exhibits a dichroic character, green in thin 

layers and red in thick layers. This solution does not appear to change 

further for many weeks, although a slight amount of gas evolution, 

presumably from solvent reduction, is detectable. After 7-10 days 

tiny black crystals appear on the walls just above the alloy. These 

hexagonal appearing crystals exhibit no color under microscopic exami­

nation but leave a very dark green streak when ground to a very fine 

powder in a mullite mortar. After an additional week these crystals 

were about 0.2 mm in diameter, and the solvent could be decanted and 



www.manaraa.com

20 

crystals removed for structural study. If instead the reaction was 

allowed to continue, the crystals would either grow larger or more would 

nucleate until all of the starting intermetallic was consumed, at which 

time the gas evolution ends and the solution fades to a deep clear 

emerald green. This final color comes from a more reduced solution in 

equilibrium with the solid salt and is necessary if the salt is to be 

stable in the presence of en. If fresh en is condensed onto crystals 

of the tetrabismuthide salt, they disproportionate to form this colored 

solution and bismuth. 

The reaction equation inferred from this, ignoring intermediates 

only present in solution, is, 

K^Bi^ + 5 crypt + 3en -»• (crypt + 3(crypt K^)en + 3/2 t 

where en represents the amide formed by removing a proton from an en 

molecule. The coefficients of this equation can be varied to fit any 

composition for the starting intermetallic. 

If the most reduced compound in the system, K^Bi, is used as the 

starting material, the reaction follows the same course, but proceeds 

much more slowly, with the green solution taking days to form and then 

becoming dichroic over a period of about two weeks. Crystals take 

another two weeks to appear, and the entire reaction requires several 

months to run its course, with more gas evolution than with the less 

reduced compounds, as expected. 

When KBi^, which already has the correct stoichiometry for the final 

product, is used, the solution initially formed is brown but it becomes 

dichroic after about a week. After about a month the same crystals begin 
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to appear on the surface of the intermetallic compound. The starting 

material is consumed slowly and even after about a year some of it 

remains, although the color of the solution reverts to brown after about 

six months. 

When any of the polyblsmuthide solutions come in contact with the 

Teflon needle valves they leave a dark deposit. If they remain in 

contact with it the deposit grows and the solution decolorizes. Much of 

this deposit can be wiped from the Teflon and most of what does not wipe 

off dissolves in nitric acid, but in severe cases the plastic is perma­

nently discolored. 

Evaporation of any of the intensely colored solutions fails to pro­

duce any crystalline material, uniformly yielding a dark brown paste. 

On several occasions this paste was deposited in a manner superficially 

quite similar to dendritic crystals, but a closer examination of these 

promising "crystals" revealed their true paste nature. 

Other solvents, such as liquid ammonia and acetonitrile were tried 

in these reactions, and only the latter showed any activity in a period 

of days. This was the formation of a coffee-brown solution which did 

not yield any crystalline material either on standing three weeks or on 

evaporation of the solvent. 

If en is condensed on the intermetallic compound in the absence of 

crypt no reaction is observed with either K^Bi or KBi2, but both 0^512 

and K^Bi^ give a purple solution, the color reported by Zintl for 

3- 9 
Bi^ . When this purple solution is poured off the intermetallic 

compound and onto crypt it immediately reacts to form a green solution. 
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This reaction is sufficiently exothermic to boil the solvent in the 

vacuum. 

Preparation of zirconium dichlorides 

In a recent study it was shown that zirconium monochloride is a far 

more reactive reductant for the tetrachloride than is metallic zirco­

nium.^^ Therefore ZrCl and ZrCl^, which are the only easily accessible 

stoichiometric compounds in the Zr-Cl system, were used as starting 

materials in all efforts to produce zirconium dichlorides. Although 

the tetrachloride was prepared in glass, all further reactions were 

carried out in tantalum containers which were arc welded closed with 0.5 

atmosphere, or less, of He inside. The use of tantalum for an inert 

container material avoided the contamination of the product with oxides, 

silicides, or oxychlorides which form by reaction of the reduced 

chlorides with glass and allowed the containment of pressures to 30 

atmospheres, far higher than ordinary glass containers could withstand. 

Zirconium tetrachloride was prepared by passing a stream of chlorine 

(Matheson Gas Products) over strips of reactor grade zirconium foil 

(~ 0.05% Hf) heated to 400°. Initially the product was pale yellow due 

to iron apparently entrained with the chlorine, but this was removed by 

subliming the tetrachloride from strips of fresh zirconium foil at 235°. 

Zirconium monochloride was prepared quantitatively from the tetra-

30 
chloride and Zr turnings using the method developed by Daake. 

Stoichiometric quantities of the two materials were sealed in a tantalum 

tube, and heated gradually, over a period of 2 weeks to 850°, and held 

there for a week before cooling. 
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Powdered dichloride samples were prepared by combining weighed 

quantities of ZrCl and ZrCl^ in a 6 mm tantalum tube and heating it 

isothermally between 600° and 700°. Because there is a substantial 

pressure of ZrCl^ formed by the disproportionation reaction; 

ZrCl2-x(s) •*" Z=^^4(g) 

a slight excess of ZrCl^ was always required. An unfortunate result of 

this gas phase was the contamination of all powdered samples with traces 

of ZrClg which is formed by the back reaction of the tetrachloride gas 

with the dichloride on cooling. This contamination was limited to the 

surface however, as reactions in this system are generally so slow (6-8 

weeks for a typical equilibration) that nothing more than a small amount 

of back reaction occurs during the few hours necessary for cooling and 

the bulk of the material is unaffected. Isothermal equilibrations pro­

duced the bulk of the dichloride material made, including all of the 

cluster compound. 

Single crystals of the slab-type dichloride vera produced by gas 

transport using this autogenous pressure to furnish a transport medium. 

In a typical reaction 2.50g of a mixture of ZrCl and ZrCl^ having a net 

composition of about ZrCl^ ^ loaded into an 8.7 mm (i.d.) Ta tube 

about 14 cm long. For a transport reaction the tube was welded shut at 

the lowest pressure at which an arc could be maintained, generally about 

1/6 atmosphere. After sealing the Ta tube into an evacuated Vycor 

jacket, thermocouples were attached to the outside of the jacket. To 

compensate for a reduction in gradient inside the Ta tube because of the 
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heat conduction of the metal, the thermocouples were placed about 5-7 mm 

inward from the actual ends of the inner metal tube. 

Initially the container was heated isothermally to 350° to affect 

the reduction of the bulk of the tetrachloride. It was then brought 

gradually up to the desired gradient temperature, with care being taken 

to insure that the temperature at the cool end never exceeded the 

desired final temperature. The gradients used were 750° to 650°, 700° 

to 650°, 750° to 700°, and 700° to 750°, with the temperature of the 

starting material listed first in each case­

in each case the double container with attached thermocouples was 

placed in an Inconel pipe at least 6 cm longer than the Vycor jacket 

to insure an even gradient. Two methods were used to create gradients. 

The first of these involved gradually pulling the Inconel pipe out of a 

tube furnace while increasing the temperature of the furnace until the 

desired gradient was achieved. When a multiple zone furnace with 

separate controls for each zone became available it proved advantageous 

to vary the temperatures of two adjacent zones until the desired gradient 

was obtained. Reaction times ranged from 3 to 8 weeks after the 

gradient was established. 

In all cases the cooler end of the tube was elevated relative to 

the hotter to promote convection within. Schafer states that when the 

total pressure exceeds three atmospheres in a closed tube transport 

reaction with a tube about 20 mm in diameter convection becomes the pre­

dominant factor in the movement of the material being transported.^^ 

Although the tubes used here were of significantly smaller diameter than 
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he described, the pressures were significantly above three atmospheres 

(actually between 5 and 10 atmospheres when the starting material was 

at 750° judging from the degree of end cap bulging) . Convection was 

probably contributing to the transport which was significantly faster 

at this temperature (about twice as much material moved each week) than 

at 700*. 

The only available estimate of the ZrCl^ pressure over ZrCl2 comes 

44 
from Uchimura and Funaki whose data only extend to 670 . If the equa­

tion they derive is used, the result is 1.0 atmosphere at 700®, 1.8 at 

750®, and 3.05 at 800®, below the amount needed to account for the cap 

bulging at 750® and far below the degree of dissociation observed for 

an isothermal equilibration quenched from 800®. 

In all of the transport reactions where the transport was from high 

to low temperature, crystals were found growing in the coolest 3 to 5 cm 

of the tube. These crystals of the slab-type dichloride, silvery with 

a metallic luster, occurred either as platelets with trigonal or hexago­

nal morphology and at least a 10 or 20 to 1 ratio of width to thickness 

or as very thin fern-like fronds clearly exhibiting a dendritic growth 

pattern but still having hexagonal angles. Some good quality crystals 

could also be found intermixed with the untransported material. This 

is somewhat surprising for it implies growth in an isothermal region, 

but in all of the isothermal equilibrations no crystals were ever 

observed which were large enough to discern individually, even after 

longer reaction times. 
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X-Ray diffraction: powder patterns 

Powder patterns used for identification of the intermetallic 

ccspounds were taken with an 11.46 cs diameter Debye-Scherrer camera 

O 
and Ni-filtered CuK- radiation (X = 1.5418A) for a dispersion of 1® in 

20 for each 1 mm of film. 

For the zirconium dichloride work, where precision lattice constants 

were needed, an evacuable Model XDC-700 Guinier camera (IKDÂB, Stockholm) 

equipped with a quartz bent-crystal monochromator and adjusted to pro-

O 
duce a CuK^^ (X = 1.54056A) incident beam was employed. This unit pro­

duces a dispersion of 1° in 26 for each 1.75 mm of film which, coupled 

with a measurement reproducibility of 0.01 to 0.02 mm for line positions, 

yields a precision of ±0.005° to 0.010°. To insure accuracy a precision 

scale was printed on the film before the pattern was taken using an 

IRDAB SDC Scaling Device. Use of this scale automatically compensates 

for non-linear film shrinkage as well as for variations in film size due 

to temperature changes during reading. Line sharpness was further 

enhanced by developing only the front side of the film. Line positions 

were referenced to Si powder (NBS Standard Reference Material 640, 

O 
ao = 5.43088A) which was mixed with the sample. 

All of the powder samples were mounted in the drybox by placing 

the material and the internal standard on a strip of tape previously 

attached to a washer of proper size to fit into the camera. This was 

covered with a disk of tape previously cut with a cork borer. Very few 

specimens showed any reactivity towards the tape, and these only 

reacted slowly. 
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Lattice parameters were obtained from indexed patterns using a 

local lattice refinement program which has provision for assigning 

poorly measured (weak or b^oad) lines a lesser weight in the refine-

58 
ment. Calculated powder patterns were produced by the program 

59 
produced by Clark, Smith, and Johnson modified to match local con­

ventions and machine configuration and to add the appropriate Lorentz-

polarization factor for the Guinier-Hagg geometry as an option. This 

program includes intensity corrections for absorption for either Debye-

Scherer or flat-plate geometries. 

Two types of intensity measurements were used. For most work 

visually estimated values, coupled with direct pattern to pattern 

comparisons, were sufficient. When more accurate values were needed the 

film was scanned with a Jarrel-Ash microdensitometer and the density 

profile converted to integrated intensities by either cutting out each 

peak and weighing it or tracing each peak with a planimeter. 

X-Ray diffraction: single crystals 

For single crystal studies the reaction vessel was opened in a 

drybox specially designed for crystal mounting and described in detail 

37 
elsewhere. Individual crystals with well-developed faces and maximum 

dimensions in the range of Û.2 to 0.3 mm were selected, picked up with 

a glass fiber dipped in Vaseline, and inserted into 0.2 or 0.3 mm 

diameter Lindemann glass capillaries. These capillaries were sealed 

inside the drybox with a hot wire, outside the drybox again with a gas 

torch and the ends capped with black wax (Apiezon W). Vaseline was used 

almost exclusively for mounting crystals as it proved inert towards all 
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of the compounds. When silicone grease was used to mount a batch of 

+ 2— 
(crypt K >2 Bi^ crystals, they rapidly decomposed. 

All of the crystals successfully mounted were examined with oscil­

lation photographs taken with a standard Weissenberg camera and Ni-

filtered CuK- radiation. With the cluster anion crystals all of the 
a 

specimens examined were either good quality, or so poor that this was 

apparent after a simple oscillation photograph. 

With zirconium dichloride the crystals were so thin that many bent 

during mounting such that a crystal which gave good sharp spots in an 

oscillation photo would give streaks parallel to the direction of 

translation in a Weissenberg photograph,(or oscillation photograph 

taken with the film translating). This effect is observed when the 

crystal is bent to follow the wall of the capillary and the capillary is 

coincident with the axis of rotation. In this arrangement the same 

planes of the crystal come into diffracting position at different times 

for different parts of the crystal. If the film has not moved relative 

to the crystal, as in a normal oscillation photograph, both parts of 

the crystal will diffract to the same point, but if the film has moved, 

as in a Weissenberg photograph, they will diffract to different points 

on the film. If the crystal makes a continuous curve the diffraction 

onto moving film will be a streak. 

Many of the dichloride crystals were fully aligned and Weissenberg 

photographs taken. Besides revealing difficulties such as the above 

these photographs revealed much information which would not have been 

forthcoming if only diffractometer techniques had been employed. 



www.manaraa.com

29 

The data used for the structure refinements were collected using 

an automated four-circle diffractometer designed and built in the Ames 

Laboratory and described in detail elsewhere.The indexing scheme 

used by this unit involves taking additional oscillation photographs on 

the diffractometer with Polaroid film and then locating these points 

with the diffractometer by starting with the location indicated by the 

film. The locations of 8 to 10 reflections determined in this manner 

are then used to determine the unit cell by an algorithm described in 

62 
detail elsewhere. 

+ 2-
Data collection for (crypt K Te^ .en 

The crystal selected had the form of a triangular pyramid with 

truncated corners symmetry) 0.2 mm in height, 0.3 mm on basal edges. 

O O 
Trigonal symmetry with a = 12.26A and c = 31.33A was indicated by the 

initial orientation and integrated intensity data were collected on this 

basis at a temperature of 'v, 25° for 29 ̂  50° using Mo radiation 

O 
monochromatized with pyrolytic graphite (X = 0.70954A) at a take-off 

angle of 4.5°. During data collection the intensities of three different 

standard reflections were monitored every 75 reflections to check for 

instrument and crystal stability. A total of 5591 reflections were 

examined over the HKL and HKL octants with standard reflection decay of 

O 
only about 1%. Final unit cell parameters of a = 12.229(1)A and c = 

° 63 
31.242(4)A were obtained from the same crystal by a least squares fit 

to twice the Q values of 14 reflections each of which was tuned on both 

Friedel-related peaks to eliminate instrument and centering errors. 
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°3 3 
These dimensions give a volume of 4046A and a density of 1.57 g/cm 

for Z = 3 and a formula weight of 1274.10. 

The observed intensities were corrected for Lcrentz and polarization 

effects, but no absorption correction was made as the linear absorption 

_1 64 
coefficient was calculated to be only 18.8 cm . A total of 2385 

reflections were "observed" by the criterion I>3a(I), and 2033 unique 

reflections remained after averaging of equivalent reflections. The 

condition 2 = 3n for observation of 005- reflections indicates a three­

fold screw axis parallel to c and requires that the compound be in one 

2 
of ten space groups which make up five enantiomeric pairs, P3^ (C^ , 

No. 144) and 23^ (C^^, No. 145), P3^12 (D^^, No. 151) and P3212 (D^^, 

No. 153), P3^21 (Dg*, No. 152) and P3221 (D_*, No. 154), PS^ (C^*, No. 

171) and P6^ (C^^, No. 172), and P6222 (D^*, No. 180) and P6^22 (D^^, 

No. 181). These choices were reduced to one pair, P3^ and by the 

lack of any symmetry higher than 3 in the diffraction data, that is, 

58 — 
averaging the data in the higher Laue classes 32/m and 5/m gave peer 

agreement between supposedly equivalent reflections, while in 3 the 

equivalent pairs matched quite well. 

Structure determination and refinement for (crypt K^)^ Te^^ - en 

The trial structure was obtained by conventional heavy atom tech­

niques, the shape of the anion being readily apparent from the Patterson 

map.^^ Full matrix least squares refinement of the tellurium and 

potassium atom positions with isotropic thermal parameters using a 

locally modified version of Busing et al. OKFLS^^ resulted in an 
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unweighted factor R = ZjjF^I - jF^|[/Z|F^| of 0.22. Location of the 52 

independent non-hydrogen atoms of the two crypt molecules by Fourier 

synthesis and refinement of their positions and isotropic temperature 

factors resulted in R = 0.13. 

Examination of an electron difference map calculated with ALFF^^ 

at this point revealed the presence of four peaks near the tritelluride 

ion arranged roughly in the manner expected for the non-hydrogen atoms 

of an ethylenediamine molecule. On introducing these and conversion of 

the tellurium and potassium atoms to anisotropic temperature factors 

2 2 2 
(of the form exp-(h + k ̂ ^2 + ̂  633 + 2hkg^2 2k2g23)) 

refinement of all 269 independent parameters gave R = 0.095 and R^ = 

[(Zw(jF^l - |F^|)^/Zw|Fg|^]^^^ " 0.123, where w was set equal to 

Op Because of a strong systematic dependence of 1[F^j - |F^|| on 

sin 0/X and F^ the data were reweighted in 20 groups to minimize these 

dependences, giving final values R = 0.094 and R^ = 0.103. The largest 

shift in any variable during the last cycle of refinement was 0.12a in 

en atoms, 0.05a in crypt atoms, and 0.03a in heavy atoms. A difference 

o3 
Fourier map indicated residuals only < ±0.5 e /A except near the 

°3 
tellurium atoms where there were up to ±0.75 e~/A . The 80 unlocated 

hydrogen atoms in this compound account for 12.5% of the total electron 

density and furnish a plausible explanation for R being above 0.09. 

The correct resolution between the enantiomeric space groups P3^ 

and P32 was accomplished by refinement of all final parameters to con­

vergence in both of the possible space groups, relying on the anomalous 

dispersion of tellurium and potassium^^ to indicate the correct choice. 
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+ 2-
Data collection and structure determination for (crypt K Bi^ 

Monoclinic symmetry and approximate lattice parameters of a = 

o o o 

20.13A, b = 11-95A, c = il.lOA and p = 99.5° with C-centering was indi­

cated by the initial orientation. This turned out to be only an approx­

imation to the true triclinic cell because of an accidental near-equality 

of a and b in the crude reduced cell combined with the actual near-

equality of a and g. Four octants of intensity data were collected for 

the monoclinic cell at '\,25°C for 20 ^ 50° using Mol^ radiation. During 

data collection the intensities of three standard reflections were 

monitored every 75 reflections to check for instrument and crystal 

stability. Whenever a significant drop in the intensity of one or more 

reflections was observed all three of the reflections were relocated 

and their integrated intensities redetermined. A 40% decay in standard 

intensities was found by the end of the second octant, and 75% by the 

end of the fourth. A total of 5345 reflections were examined, including 

521 not allowed for C-centering which were all unobserved. All 

intensities were corrected for isotropic decay through a least squares 

fitting of a third order polynomial to the measured standard intensity 

68 
sum as a function of reflection count. After decay correction 2978 

reflections with I > 3o^ were considered observed. 

The observed intensities were corrected for Lorentz, polarization, 

and absorption effects (u = 128.8 cm and the data averaged for 

monoclinic symmetry to yield two different data sets, one with reflec­

tions using only the first two octants (sufficient for monoclinic) and 

the other for all four octants averaged to the unique two. Patterson 
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maps calculated from both data sets could not be interpreted in any 

chemically reasonable way given the limitation of four cryptated cations 

per unit cell imposed by the volume. A careful examination of the data 

averaging indicated that the data indeed possess only triclinic symmetry. 

Although many reflections were observed only once, only a statistical 

number of those observed twice matched well and almost all of the 

reflections observed four times showed a two-and-two pairing, all typical 

of averaging for too high a Laue group. 

At this point, all of the reflections were reindexed using the 

primitive triclinic reduced cell which has half the volume of the mono-

clinic cell and for which all reflections correspond to those allowed 

with C-centered monoclinic. This cell had only enough volume for two 

cryptated cations, and the calculated Patterson map clearly revealed 

2-
the positions of the two bismuth atoms comprising a square planar Bi^ 

anion with point symmetry, indicating PI as the correct choice of 

space group. A Fourier synthesis indicated the position of the potassium 

atom and a second synthesis with the three heavier atoms revealed all 

26 light atom positions. Full matrix least-squares refinement of the 

structure using anisotropic temperature factors for heavy atoms and 

isotropic temperature factors for light atoms converged at R = 0.17. 

A careful examination of the data indicated that the greatest variation 

between observed and calculated structure factors occurred for the 

reflections with the largest decay correction, so no further refinement 

was attempted using these data. 
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Data were retaken at room temperature using two crystals one of 

which approximated a hexagonal plate 0.03 mm across and 0.005 ram thick 

and the other a triangular prisni 0.005 zsz. thick and 0.03 = long. 

The initial orientation for both indicated triclinic symmetry and 

o o o 

approximate parameters of a = 11.63A, b = 11.83A, c = 11.13A, a = 98.3°, 

B = 98.0°, and Y = 61.4°, the same as had been obtained before. One 

hemisphere of integrated intensity data was collected using four 

standard reflections in an effort to obtain a better measurement of 

crystal decay. Data collection with the first crystal was terminated 

at the point when the standard intensities had decayed by 40%, at the 

end of the first and largest octant, and the remaining reflections were 

measured on the second crystal with a 36% standard decay during data 

collection. All corrections were carried out as above, with the trans­

mission coefficients for the first crystal ranging from 0.090 to 0.207 

and the second, from 0.135 to 0.328. 

O O 
Final unit cell parameters of a = 11.604(4)A, b = 11.796(4)A, 

c = 11.096(3)1, a = 98.12(3)°, B = 98.02(3) and y = 61.37(3) were 

58 
obtained from the second of these crystals by a least squares fit to 

the 20 values of 29 reflections (24° < 20 < 32°), each of which was 

tuned on both Friedel-related peaks to eliminate instrument and 

- °3 
centering errors. These dimensions give a volume of 1315.2(/)A and a 

3 
density of 2.11 g/cm for Z = 1 and a formula weight of 1667.12. 

Scattering factors used were those of Hanson et al.^^ and included 

corrections for the anomalous dispersion of bismuth and potassium. 



www.manaraa.com

35 

Of the 4955 reflections examined in four unique octants (HKL, HKL, 

HKL, and HKL), 2880 reflections were considered observed with I>3a^. 

Redundant reflections were averaged when both observations had been made 

on the same crystal, but when one observation had been made on each 

crystal that member of the pair was eliminated which required the larger 

decay correction, leaving 2704 unique reflections. The data from each 

crystal were scaled separately. 

+ 2— 
Structure refinement for (crypt K Bi^ 

The final atomic parameters deduced with the first data set produced 

a R value of 0.14 with the new data set with no refinement, and after 

refinement R = 0.128 and R = 0.157. Introduction of anisotropic temper-
w 

ature parameters for the light atoms produced a slight improvement in 

the unweighted residual, 0.122, and a significant^^ improvement in the 

weighted R, 0.149. Examination of both the isotropic and anisotropic 

temperature factors at this point revealed that the carbon atoms at the 

end of the crypt closer to the anion had much larger and much more 

anisotropic temperature factors than those at the other end. Drawings 

of the structure made at this point. Figure 3, indicated that the more 

anisotropic atoms were elongated in the direction in which the ethylene 

bridge was least constrained, with rms displacements in the longest 

dimension about twice those of the atoms at the other end of the ion 

(Figure 3b). 

A difference map calculated with these six atoms (C2, C3, C17, C18, 

C19 and C20) removed clearly showed doubled peaks for four of the six, 

C2, C3, CI7 and C20, serving to confirm directly the disorder which has 
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Figure 3. The crypt-potasslum cation in (crypt K^)2Bi^^ before 

the resolution of the disorder among the carbon atoms. 

The contrast in the anisotropic thermal ellipsoids for 

the disordered atoms, C2, C3, C17, and C20, which are 

at the front in (a), and those for the equivalent atoms 

at the opposite end of the ion, at the front in (b), is 

apparent. 
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been suspected in previous structures. ' These four atoms were re­

placed by eight atoms at the locations indicated by the difference map, 

each with an occupancy of 0.50 and an isotropic temperature factor. 

Another map was calculated with C5 omitted since its temperature factor 

was similar to C2 and C3, but separate atoms at this location were 

unresolved. Refinement of all parameters converged at R = 0.122 (R = 

0.148). Variation of the occupancies of the fractional atoms demon­

strated that the occupancies and temperature factors were strongly 

coupled, even when they were varied in alternate cycles of refinement, 

and that the occupancies did not refine more than la from 0.50, so these 

were fixed at that value. It did not seem appropriate tc attempt 

anisotropic refinement of fractional carbon atoms in close proximity to 

each other and the bismuth atoms. Because of a small dependence of 

IIf^I - |F^|| on F^, and because the standard deviation for an obser­

vation of unit weight was 4.01, the data were reweighted in 20 over­

lapping groups sorted on F^^^, after which the refinement converged at 

R = 0.121 (R = 0.147) for 260 independent variables. The largest 
w 

change as a result of this reweighting was a small (_< 8%) drop in 

positional standard deviations. The largest shifts during the last 

cycle of refinement were 0.12a for light atom and 0.009a for bismuth 

atom parameters. A difference Fourier map indicated a residual of 

_,°3 
2.4 e /A (at 0.240, 0.995, 0.693) which could not be connected with 

any feature of the structure, while the rest of the map was flat to 

°3 
<±1 e /A except near the bismuth atoms where variations were as great 

_,°3 
as ±2 e /A . The final standard deviations in individual positional 
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o o 

parameters ranged from 0.0014 to 0.0017A for bismuth, 0.02 to 0.03A for 

O 
oxygen and nitrogen, and 0.03 to 0.06A for the carbon atoms, with the 

upper limit in the last being reached only for the disordered carbon 

atoms. 

Although a final R value of 12.1% may seem somewhat large, it is 

not in this case indicative of a defective structure when the more 

pertinent positional errors are considered. Standard deviations of these 

are all acceptable, those for the light atoms being in fact equal to or 

better than those in other low symmetry structures involving crypt 

cations with lighter anion components (Ge, Sn, and Sb from other re-

17 26 27 
ports ' ' and Te elsewhere in this dissertation) which also refined 

to comparable residuals. The larger but relatively random errors in the 

data set are believed to arise from the need to collect data from two 

crystals with the consequent need for two major decay and absorption 

corrections. 

Structure determination of Zr,Cl,„ 

The complex powder pattern of an unknown and previously unobserved 

zirconium chloride was indexed by comparison of the observed pattern 

with a calculated pattern obtained using the atom positions for Zr^l^2, 

the lattice parameters for Sc^Cl,^,^^ and the scattering factors for 
I j_z. 

zirconium and chlorine. The 30 sharpest lines from the indexed pattern 

O 
were used to obtain lattice parameters of a = 12.973(1)A, and c = 

8.782(1)1. 

With the improved lattice parameters, a better match of observed 
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and calculated intensities was obtained by using the atom positions 

for Sc^C1^2» but omitting the isolated metal atom at the origin. It 

was clear from the differences in the calculated intensities that the 

correct formula for this compound is Zr^C1^2 and not Zr^Cl^g-

— 2 
The correct space group for this compound is R3, (C^^, No. 148) 

with 3 M clusters in each unit cell, the same as Zr,I__ and Sc^Cl, 
6 0 iz / iz 

Although over 50 lines were indexed, this powder data was insufficient 

to carry out a least squares refinement due to the fact that in the 3 

Laue symmetry numerous sets of reflections which have the same diffrac­

tion angle, such as 520 and 250, are not equivalent, and there is no 

way to apportion the observed intensity between them. A further 

improvement in the agreement between the observed and calculated 

intensities (to = (Z|I^-I^|)/El^ = 0.27) was obtained by adjusting 

the atom positions so as to approximate the bond lengths observed in 

the compound Zr^Cl^^, which is also based on a Zr^Cl^g structure unit. 

Data collection for 3R-ZrCl2 

Initial orientation for a crystal grown by R. L. Daake in a 750° 

30 
to 650° gradient and believed to have a composition of ZrCl^ 

indicated that the crystal had a c-centered monoclinic unit cell with 

o o o 

a = 5.91A, b = 3.36A, c = 7.53A, and B = 121.3°. Examination of 259 

reflections for a primitive cell showed no violation of the c-centering 

condition, h + k = 2n for an observed reflection, so the remainder of 

the 570 reflections examined were only those allowed for c-centering. 

All 447 allowed reflections were observed in a complete hemisphere to 
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a maximum 20 value of 60° using MoK^ radiation. The parameters listed 

58 
in the first column of Table II were obtained by a least squares fit 

Table II. Lattice parameters for SR-ZrCl^ q 

Parameter Monoclinic Hexagonal Rhombohedral 

a 5.860(1)A 3.3819(3)1 6.748(1)1 

b 3.3816(6)1 - -

c 7.553(2)A 19.378(3)A -

a - - 29.025(3)° 

B 121.20(2)° - -

Volume 128.04(4)A3 191.94(4)A3 63.98(3)13 

to the 20 values of 20 reflections (40° < 20 < 50°), each of which was 

tuned on both Friedel-related peaks. 

All of the statistical tests indicated that the structure was 

acentric, and this, coupled with c-centering, limited the choice of 

3 3 4 
space groups to three, C2 (C^ , No. 5), Cm (Cg , No. 8), and Cc (C^ , 

No. 9). The last of these can be eliminated since the volume limits 

Z to 2, and Cc has only four-fold positions. 

Structure determination and refinement for 3R-ZrCl^ 

C-centering, which is a translation of (1/2, 1/2, 0) for all 

atoms, together with the condition a = /5b, generates, within experi-
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mental error, a hexagonal close packed layer parallel to the a-b plane. 

The two-fold special positions in both space groups generate one such 

layer per unit cell. 

Since in both space groups it is necessary to fix the origin by 

fixing the position of at least one atom, a location which was common 

to the special positions in both space groups, (0,0,0), was selected 

and used as the fixed location of the zirconium atom in an effort to 

phase the structure. The resulting monoclinic electron density map had 

8 peaks which could be interpreted in two ways. The peaks could either 

represent one chlorine on a general (four-fold) position in C2, and a 

false set of inversion related peaks resulting from the centric phasing 

produced with only the metal atom present, or they could represent two 

chlorines on special (two-fold) positions in Cm, with their inversion 

related shadows. After testing both possibilities, the latter was 

shown to be correct by the fact that it refined better. 

Refinement of the structure using the 199 unique reflections (when 

the data were averaged for monoclinic symmetry) produced an R of 0.102 

with isotropic temperature factors and offered no evidence of an 

additional, fractionally occupied zirconium position. Further refinement 

with anisotropic temperature factors produced an R of 0.088, but still 

no sign of the fractional zirconium required if the composition were 

ZrCl^ Some difficulties encountered at this point were a tendency 

for one of the zirconium temperature factors to go negative and large 

O 
standard deviations (about O.OIA) for chlorine atoms. 

These difficulties, together with the previously mentioned nearly 
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hexagonal arrangement within the sheets of atoms, led to a careful 

reexamination of the results. From this reexamination it was apparent 

that the data could be reindexed onto a rhonbohedral unit cell which 

in its hexagonal setting has nearly the same dimensions as the cell 

30 
deduced by Daake for this compound from powder data. This reindexing 

was accomplished by multiplying the reflection indices, taken as column 

matrices, by: 

-1/2 -1/2 0 

1/2 -1/2 0 

2 0 3 

With the data reindexed, the second and third unit cells in Table 

II were obtained. Because the primitive rhombohedral cell and the 

reduced cell for the c-centered monoclinic cell are the same in terms 

of axes (but not in terms of symmetry) all of the reflections for 

the rhombohedral cell had been examined. After reindexing, averaging 

for trigonal symmetry produced 98 unique reflections with no rejections 

and ^3^3= 0.040. 

Daake had suggested that the structure of ZrCl^ was very similar 

to that of 3R-NbS2, but not identical, as he had observed extra lines 

not allowed for rhombohedral symmetry. Although this suggestion had 

been deliberately ignored at first to see where the loss of symmetry 

indicated by the extra lines led, at this point it seemed clear that 

this crystal had full rhombohedral symmetry. The correct space group 

for 3R-NbS2 is R3m No. 160), with all of the atoms located on the 
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3a (0,0,z) position.The orientation of this cell with respect to the 

monoclinic one is such that the z axis of the hexagonal cell, which is 

a three-fold rotation axis, lies in the mirror plane, and all three atoms 

lie within one standard deviation of the axis. 

When the atomic coordinates were converted from monoclinic to 

hexagonal they were found to be roughly the same as those reported for 

SR-NbSg, or SR-MoS^^^ which is isoelectronic with ZrClg. Refinement with 

isotropic temperature factors produced an R of 0.103, and gave no 

evidence of any other metal atoms, even at the octahedral site between 

slabs where one is believed to occur in SR-Nb^^^S^^^. At attempt to 

put a fractional atom at this site resulted in a large increase in R^ 

and a large temperature factor (nearly 100 times that of the other 

zirconium), indicative of the refinement's attempt to get rid of the 

atom by spreading it extremely thin. When the occupancy was allowed 

to vary with the temperature factor fixed at slightly larger than 

the first zirconium it dropped to 0.013 with a standard deviation of 

0.012. 

Conversion to anisotropic temperature factors allowed refinement to 

an R factor of 0.082 (R = 0.116) and still showed no evidence of any 

other atoms. Allowing the occupancy of the three atoms definitely 

present to vary did not result in a change from unity of even one 

standard deviation, and was taken as a firal indication that the compo­

sition of the crystal examined was actually ZrCl^ oo(l)' Reweighting 

the dataset allowed the final refinement to go to an R of 0.094, with 

an R of 0.074. No absorption correction was carried out, as the 
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absorption coefficient for this compound was not large (y = 58.6cm ) 

and the shapes of the final refined thermal ellipsoids did not suggest 

any need for such a correction. 

Further data collection and refinements on other ZrCl^ crystals 

Four other crystals were oriented and data collected as described 

above; their lattice parameters and other pertinent data appear in 

Table III. 

The first of these crystals had a three slab repeat, based on the 

length of the c axis, but a primitive unit cell. 

Examination of the data from crystal I indicated that almost all 

of the intensity arose from reflections allowed for either the obverse 

or reverse orientations of 3R-ZrCl2. These two orientations actually 

are the same structure, with a 60° rotation (about c) in the choice of 

72 
the hexagonal a and b axes used to define the coordinate system. 

Because the hexagonal cell has three times the volume of the rhombohedral 
f 

cell only a third of the possible reflections for a primitive hexagonal 

cell of the same dimensions are allowed for the R-centered hexagonal 

cell. These are those reflections with indices such that - h + k + £ = 3n 

if the obverse setting is chosen and h - k + £ = 3n if the reverse 

setting is chosen. As a result of this all reflections with h ̂  k are 

only allowed for one or the other, or neither, which creates two nearly 

unique sets of reflections. The coexistence of both sets of reflections 

indicates twinning with the components of the twin related by this 60° 

rotation. (For more details see the discussion of the slab-type com­

pounds appearing later in the discussion section.) 
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Table III. Lattice parameters and number of observed reflections 
for four other dichloride crystals 

Crystal 

a (A) 

c(A) 

V(A3) 

Number of Reflections 
used in 
Lattice Calculation 

Number of 
Reflections Observed 

Fraction of 
Reflections Observed 

I 

3-slab 

3.3797(4) 

19.386(2) 

191.77(4) 

21 

1149 

0. 78 

II III IV 

6-slab 6-slab 6-slab 

3R-component 6T-component 

3.3800(3) 

38.772(9) 

383.60(12) 

26 

1082 

0.71 

3.3789(8) 

38.721(21) 

382.84(21) 

803 

0.33 

3.3793(2) 

19.374(1) 

191.60(2) 

1452 

0.75 

3.3791(4) 

38.713(7) 

382.82(11) 

^ Based on a primitive lattice. 
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Also supporting this twinning hypothesis was the Patterson map 

calculated with these data which had all of the peaks expected for both 

rhombohedral orientations. The few observed reflections which were not 

allowed for either orientation and indicated a primitive cell were 

substantially weaker than the rest. 

In an effort to learn something from this specimen a sorted dataset 

was prepared containing the reflections allowed only for the rhombohedral 

obverse setting at full intensity. Those either allowed for both 

rhombohedral settings, or forbidden for both, were included with their 

intensities reduced by a fraction equal to; 

^^obv(hOJl,OkJl) 

^^obv(hO&,Ok&) ^^rev(hOi,Ok£)' 

In this expression I^^^ stands for the intensity of the obverse-allowed 

reflections, and I the reverse-allowed reflections. 
rev 

Using the atom positions obtained in the previous section, refine-

_2 
ments led to an R of 0.136 (R of 0.284, with w = ) for P3 symmetry 

w r 

and an R of 0.154 (R of 0.519) for R3m symmetry. In neither case was 

there any evidence for the extra metal atom (or atoms) necessary to give 

a more reduced composition or to explain the observed loss of symmetry. 

Attempts to put extra atoms into the available holes in the structure 

led in the P3 case to R values of 0.33 to 0.35 (and R values of 0.49 

to 0.55) even at very low fractional occupancies. 

Another even less successful attempt to resolve this problem 

involved producing a dataset for the reverse orientation with 
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I = I — I 
rev obs calc(obv). 

Refinement with this dataset led to an R of 0.41. This large R was 

directly attributable to very low values of as calculated above 

for the common reflections. It was quite apparent that these common 

reflections were not as intense as expected from the relative intensities 

of those unique to one set. A possible explanation for this lies in the 

differences in the makeup of the planes having indices allowing them to 

be observed for both orientations. These differences could lead to a 

lower diffracting efficiency for these reflections owing to destructive 

interference. 

Crystal II had weak spots between those expected for a 3 slab 

repeat, indicating a doubled period in c, or 6 slabs to the stacking 

repeat. Because the superposition of the image of a 3 slab structure 

on top of a 2 slab can give the impression of a 6 slab structure, a 

careful examination of the data was in order. For such a superposition 

the only reflections observed for the 6 slab lattice will be those 

where & is a multiple of 2 or 3 or both. The fact that a significant 

number of reflections were observed with Z being a prime numbei greater 

than 3 dismisses this possibility. 

Like crystal I, most of the intensity was found in those reflections 

allowed for the SR-ZrCl^ structure in both orientations. For a 6-slab 

structure there are four ways this could come about; (1) a 6-slab struc­

ture based on 3-slabs in each orientation of the 3R form, (2) a twin of 

a 6-slab superstructure based on two repeats of the 3R structure in 
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either form, but both the same, (3) the same as above, but intergrown 

with segments of pure SR-ZrClg, and (4) a 6-slab structure of some form 

(any other possible 6-slab stacking sequence) intergrcwn with both 

orientations of SR-ZrClg and with the 3R predominating. 

A Patterson map was calculated and the first possibility immediately 

eliminated because of a peak at (0,0,1/2) which was ~90% the height 

of the origin peak. This requires most of the atoms in the unit cell 

to repeat after a z translation of c/2. The other three possibilities 

all allow this. 

The second possibility could also be eliminated. If only the 6-

slab was present, more intense peaks would be expected in the map for 

the extra atoms than were observed. Neither of the other possibilities 

could be eliminated and the structure could not be solved for this 

crystal which, while single, was not single phase to x-ray diffraction. 

The most promising of these crystals, based on the relative spot 

intensities in Weissenberg photographs, was III, which appeared to be 

predominantly 6-slab material. Unfortunately once this crystal was 

mounted on the diffractometer so that it was possible to oscillate the 

crystal on all three axes it became apparent that the crystal was 

disordered in terms of random rotations about the c axis. This re­

sulted in very broad peaks (width at half-height 0.6" in Q, compared 

with 0.06° for a good crystal) and few observed reflections with 2 

greater than 10. The stacking order could not be determined although 

all 18 unique variations in the positions of the zirconium atoms, 12 

acentric and 6 centric, were tried. In all cases the R factors, both 
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weighted and unweighted, were greater than 0.85 owing to the poor 

quality of the crystal. 

The final crystal examined, IV, was of very good quality, giving 

sharp spots in all oscillations. This crystal once again was an example 

of intergrowth between the 3R and the 6 slab variations, however in 

this case it was possible to obtain separate lattice constants for the 

two variations by separating the 16 tuned reflections into those 

allowed for 3R and those not allowed. The difference between c for the 

O 
6 slab and twice c for the 3R components is 0.034(7)A. 

Using a dataset containing only the reflections allowed for a 3 slab 

cell with the obverse rhombohedral orientation it was possible to obtain 

an R of 0.121 (R = 0.174) for the 3R-ZrCl» component, with all atoms 
W 2. 

within la of the values obtained previously. At attempt to use this 

component of the crystal to phase the rest failed to provide a coherent 

picture, showing only the obvious, that all of the atoms were on the 

3-fold axes and spaced along c to agree with the slab type structure. 

For the 6-slab component a structure was obtained using only the 

reflections with odd values of £ by assuming that the only strong 

vector observed in the Patterson map calculated with the data from 

crystal III represented a Zr-Zr vector for the 6 slab component. In 

retrospect this choice appears more fortuitous than prudent. The two 

atoms thus located revealed the presence of either one more, for a 

centric structure, or four more for an acentric structure. Assuming 

nothing about the symmetry, the four acentric atoms were put in and 

twelve chlorines located. Refinement of these atoms for both the 
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centric and acentric possibilities proceeded in parallel until the re­

finement of temperature factors for the acentric case showed coupling 

between temperature factors for inversion related atoms which was taken 

to indicate that the centric choice was correct. 

The slab stacking in this structure is ABABAB, equivalent to three 

unit cells of ZH-MoS^, and alone does not explain the observed 6-slab 

repeat. Examination of an electron density map at this point indicated 

the presence of a fractional zirconium atom in the octahedral hole 

centered on (0,0,0). With an atom at 0.5 occupancy on this site refine­

ment proceeded to an R of 0.261 (R = 0.400) and after reweighting to 
w 

R = 0.256 (R = 0.304). 

Although this structure (henceforth called 6T) is based on a very 

high symmetry subcell (2H-M0S2, space group P6g/mmc,D^^, No. 194) it 

— 3 
has quite low symmetry, only that of space group P3ml (D^^, No. 164). 

Distances and drawings 

All of the drawings of the structures appearing in this dissertation 

73 
were produced using the program 0RTEP2 by C. K. Johnson. Unless 

otherwise noted in the individual figure, all thermal ellipsoids are of 

50% probability size. Distances, angles, and their differences were 

calculated with the program ORFFE using the variance-covariance matrix 

calculated by ORFLS and include corrections for the uncertainties in 

74 
the lattice parameters. 
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Photoelectron spectroscopy data 

All photoelectron spectroscopy data, both x-ray (XPS) and ultra­

violet (UPS) were obtained on an AEI Model ES200B instrument coupled 

to a Nicolet 1180 minicomputer for data averaging and curve smoothing. 

Spectra were accumulated in either 128 channels or 256 channels and from 

10 to nearly 500 scans were averaged to reduce noise, with the exact 

number varying with the specimen. Smoothing involved a nine point fit 

centered on each point of the spectrum. The instrument was operated by 

J. W. Anderegg. 

Data were obtained using either an A1 (1486.6 eV) x-ray source 

or helium (Hel, 21.21eV) ultraviolet source. XPS spectra for materials 

without an apparent Fermi edge were referenced to silver metal on the 

back of the sample holder. 

Samples were prepared by pressing the powdered material onto a strip 

of indium and attaching this to the sample holder with all manipulations 

carried out in a helium atmosphere drybox (H^O and 0^ less than 1 ppm 

each) directly connected to the sample port of the instrument. All 

spectra are from unetched sançles due to the fact that argon ion 

etching reduces ZrClg instead of cleaning the surface. On the one 

occasion when etching was attempted, the entire surface of the specimen 

was converted from dichloride to mono chloride. 
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SALTS OF THE CLUSTER ANIONS Te,^" AND Bi,^" 
3 4 

The tritelluride ion in (crypt Te^^ -en 

The final positional and isotropic thermal parameters are listed 

in Table IV with the anisotropic thermal parameters for tellurium and 

potassium in Table V. Bond lengths, angles, and significant non-bonded 

2-
distances for the Te^ anion, together with bond lengths and angles 

for the hydrogen-bonded ethylenediamine molecule and oxygen, nitrogen, 

and potassium atoms of the cryptated cations appear in Table VI. The 

remaining ligand distances and angles as well as the observed and calcu­

lated structure factors appear in reference 28. 

The [110] view of the contents of one unit cell is shown in 

Figure 4. The most interesting feature of this compound is the hitherto 

unknown tritelluride ion, illustrated in Figure 5 in two views. The 

O 
deviation of the ion from symmetry by 0.028A (4a) is probably 

significant and contrasts with the rigorous symmetry required by 

cry s t a l  s y m m e t r y  f o r  t h e  c o n g e n e r i c  S ^ ^  a n d  S e ^ ^ "  a n i o n s . ^ ® ' T h i s  

difference in bond lengths is probably the result of hydrogen bonding 

O 
between Te(3) and N(l) of the ethylenediamine molecule which is 3.46(6)A 

away. Hamilton and Ibers^^ suggest that evidence of a hydrogen bond 

in a crystalline salt is the observation of a distance between two non-

hydrogen atoms, one of which is capable of donating electrons (tellurium 

in this case) and one of which is electronegative and bonded to hydrogen, 

which is less than the sum of the van der Waals radii. This sum is 
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Table IV. Final positional and thermal parameters for (crypt K )2^^3 'cn 

Fractional Coordinates Atomic Temperature 

Atom X y z Factors (B) 

Te(l) 0.1671(3) 0.1585(3) 0.0 a 

Te(2) 0.0232(3) 0.2221(4) 0.0499(1) a 

Te(3) 0.0622(2) 0.2017(2) 0.1349(1) a 

K(l) 0.7250(7) 0.5365(7) 0.1244(2) a 

K(2) 0.3974(7) 0.8688(7) 0.1646(3) a 

N(lOl)^ 0.723(3) 0.520(3) 0.028(1) 6.3(7) 

C(102) 0.848(4) 0.609(4) 0.012(1) 7(1) 

C(103) 0.900(4) 0.733(4) 0.030(1) 7(1) 

0(104) 0.935(2) 0.731(2) 0.0779(8) 6.0(5) 

C(105) 0.976(4) 0.853(4) 0.097(1) 7(1) 

^ See Table V. 

^ The first digit keys the crypt molecule, the others the atom number as in ref. 17. 
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Table IV. Continued 

Fractional Coordinates 

Atom X y 

C(106) 0.017(3) 0.846(3) 

0(107) 0.896(2) 0.759(2) 

C(108) 0.931(4) 0.772(4) 

C(109) 0.787(3) 0.691(3) 

N(llO) 0.727(2) 0.558(2) 

C(lll) 0.592(4) 0.482(4) 

C(112) 0.518(4) 0.528(4) 

0(113) 0.509(2) 0.491(2) 

C(114) 0.415(3) 0.511(3) 

C(115) 0.406(3) 0.468(3) 

0(116) 0.517(2) 0.531(2) 

C(117) 0.511(5) 0.491(4) 

C(118) 0.631(3) 0.553(3) 

C(119) 0.682(4) 0.389(4) 

z 

Atomic Temperature 

Factors (B) 

0.142(1) 6.2(9) 

0.1642(7) 5.7(5) 

0.209(1) 6(1) 

0.232(1) 6.2(9) 

0.218(1) 5.5(6) 

0.236(1) 7(1) 

0.211(1) 6.5(9) 

0.1684(7) 5.4(5) 

0.145(1) 5.6(8) 

0.102(1) 4.9(7) 

0.0781(8) 5.8(5) 

0.035(1) 8(1) 

0.010(1) 5.6(8) 

0.018(1) 8(1) 
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Table IV. Continued 

Fractional Coordinates 

Atom X y 

C(120) 0.745(4) 0.328(5) 

0(121) 0.712(2) 0.318(2) 

C(122) 0.783(3) 0.268(3) 

C(123) 0.741(3) 0.252(3) 

0(124) 0.773(2) 0.375(2) 

C(125) 0.758(4) 0.362(4) 

C(126) 0.803(4) 0.497(4) 

N(201) 0.400(3) 0.863(3) 

C(202) 0.336(4) 0.733(4) 

C(203) 0.210(5) 0.651(5) 

0(204) 0.226(2) 0.646(2) 

0(205) 0.108(4) 0.567(4) 

C(206) 0.143(4) 0.549(4) 

0(207) 0.192(2) 0.670(2) 

z 

Atomic Temperature 

Factors (B) 

0.041(1) 8(1) 

0.0864(8) 5.9(5) 

0.111(1) 5.3(8) 

0.154(1) 5.2(8) 

0.1734(8) 6.2(6) 

0.219(1) 8(1) 

0.237(1) 7(1) 

0.071(1) 7.4(8) 

0.057(1) 7(1) 

0.080(1) 9(1) 

0.1227(9) 6.7(6) 

0.144(1) 7(1) 

0.190(1) 7(1) 

0.2119(7) 5.9(5) 
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Table IV. Continued 

Fractional Coordinates 

Atom X y 

C(208) 0.228(4) 0.655(4) 

C(209) 0.265(5) 0.788(5) 

N(210) 0.398(3) 0.877(3) 

C(211) 0.439(4) 0.008(5) 

C(212) 0.373(6) 0.070(6) 

0(213) 0.396(2) 0.074(2) 

C(214) 0.332(3) 0.126(3) 

C(215) 0.367(4) 0.143(4) 

0(216) 0.343(2) 0.035(2) 

C(117) 0.361(5) 0.045(5) 

C(218) 0.326(5) 0.919(5) 

C(219) 0.521(5) 0.927(4) 

C(220) 0.610(4) 0.893(4) 

0(221) 0.614(2) 0.911(2) 

z 

Atomic Temperature 

Factors (B) 

0.255(1) 6.7(9) 

0.277(1) 9(1) 

0.261(1) 8.0(9) 

0.275(1) 8(1) 

0.252(2) 11(1) 

0.2068(9) 6.8(6) 

0.185(1) 6.1(9) 

0.143(1) 7(1) 

0.1208(8) 6.5(6) 

0.074(1) 9(1) 

0.054(1) 8(1) 

0.055(1) 9(1) 

0.075(1) 7(1) 

0.1205(8) 5.9(5) 
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Table IV. Continued 

Fractional Coordinates Atomic Temperature 

Atom X y z Factors (B) 

0(222) 0.701(3) 0.888(3) 0.140(1) 4.9(7) 

C(223) 0.718(3) 0.942(3) 0.187(1) 6.1(9) 

0(224) 0.605(2) 0.872(2) 0.2107(7) 5.4(5) 

C(225) 0.615(4) 0.903(4) 0.256(1) 8(1) 

C(226) 0.497(4) 0.839(4) 0.276(1) 6(1) 

Nl(EN) 0.008(5) 0.226(5) 0.242(1) 11(1) 

C2(EN) 0.99(1) 0.15(1) 0.263(5) 22(5) 

C3(EN) 0.16(1) 0.27(1) 0.264(5) 25(5) 

N4(EN) 0.174(4) 0.218(4) 0.301(1) 9(1) 
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Table V. Anisotropic temperature factors 

Atom Gil' ^22 B33 G12 ^13 ^23 

Te(l) 23.2(5) 22.2(5) 1.56(3) 14.6(4) 0.9(1) 0.6(1) 

Te(2) 23.2(5) 30.0((i) 1.59(4) 20.4(5) -0.3(1) -0.1(1) 

Te(3) 10. 9(3) 11.6(3) 1.75(4) 5.3(2) 0.45(9) 0.20(9) 

K(l) 10.6(9) 11.5(9) 1.22(9) 5.5(8) 0.2(2) 0.2(2) 

K(2) 10.2(9) 9.8(9) 1.6(1) 5.6(8) -0.2(2) -0.4(2) 

® X 10^. 
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Table VI. Distances and angles 

Distance 

Atom 1 Atom 2 (A) 

Te(l) Te(2) 2.692(5) 

Te(2) Te(3) 2.720(4) 

Te(3) N(l) (en) 3.46(6) 

Te(l) Te(3) 4.516(4) 

Te (3) Te(l) 7.456(5) 

K(l) N(lOl) 2.99(4) 

K(l) 0(104) 2.88(3) 

K(l) 0(107) 2.76(3) 

K(l) N(llO) 2.95(3) 

K(l) 0(113) 2.77(3) 

K(l) 0(116) 2.89(3) 

K(l) 0(121) 2.85(3) 

K(l) 0(124) 2.78(3) 

Atom 1 Atom 2 

Distance 
O 

(A) 

K(2) N(201) 2.91(4) 

K(2) 0(204) 2.79(3) 

K(2) 0(207) 2.88(3) 

K(2) N(210) 3.02(4) 

K(2) 0(213) 2.85(3) 

K(2) 0(216) 2.80(3) 

K(2) 0(221) 2.80(3) 

K(2) 0(224) 2.91(3) 

N(l) (en) C(2) (en) 1.04(16) 

C(2) (en) C(3) (en) 1.85(20) 

C(3) (en) N(4) (en) 1.40(17) 
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Table VI. Continued 

Vertex 

Atom 1 Atom 2 Atom 3 

Te(l) Te(2) Te(3) 

Te(3) N(l) (en) C(2) (en) 

N(lOl) K(l) N(llO) 

N(lOl) K(l) 0(104) 

N(lOl) K(l) 0(116) 

N(lOl) K(l) 0(121) 

N(llO) K(l) 0(107) 

N(llO) K(l) 0(113) 

N(llO) K(l) 0(124) 

0(104) K(l) 0(116) 

0(116) K(l) 0(121) 

0(121) K(l) 0(104) 

0(107) K(l) 0(113) 

Vertex 

Atom 1 Atom 2 Atom 3 (°) 

N(201) K(2) N(210) 179.1(10) 

N(201) K(2) 0(204) 61.4(9) 

N(201) K(2) 0(216) 62.5(8) 

N(201) K(2) 0(221) 59.4(11) 

N(210) K(2) 0(207) 60.1(8) 

N(210) K(2) 0(213) 59.2(9) 

N(210) K(2) 0(224) 61.0(11) 

0(204) K(2) 0(216) 98.5(9) 

0(216) K(2) 0(221) 100.0(8) 

0(221) K(2) 0(204) 91.3(9) 

0(207) K(2) 0(213) 97.0(9) 

0(213) K(2) 0(224) 98.6(9) 

0(224) K(2) 0(207) 98.3(8) 
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Table VI. Continued 

Atom 1 

0(113) 

0(124) 

Vertex 

Atom 2 

K(l) 

K(L) 

Atom 3 

0(124) 

0(107) 

Vertex 

(°) Atom 1 Atom 2 Atom 3 

96.1(9) 

97.3(9) 
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Figure 4. The [110] view of the unit cell of (crypt )2^^^^ -en. 

Tellurium and potassium atoms are darkened. 
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2- + 2— 
Figure 5. Details of the Te^ ' ion in (crypt K )2'^®3 • I" (a) 

the ion Is viewed normal to its plane. In (b) the view 

is nearly coplanar and the hydrogen bonded ethylenedlamine 

is included. The less anisotropic thermal ellipsoid of 

Te3 is very clear in this view. 
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o 76 °  
3.70A according to Pauling, or 0.24A greater than the observed dis­

tance. Because of this rather large reduction from the expected 

O 
distance and because the 2.20A value for the tellurium(2-) radii may 

18 
be inappropriately large for present purposes, another estimate of the 

7 7  o  o  
radii by Bondi was also used. These values (2.06A and 1.55A) still 

O 
sum to a distance 0.19A greater than that measured, giving definite 

2-
evidencp of a hydrogen bond. Such a basicity for Te^ was unexpected, 

however. The substantial differences in thermal parameters of the two 

end tellurium atoms also indicate the presence of the hydrogen bond. 

Those for Te(3) which participates in this bond are only about half the 

size found for the other two atoms and more nearly approximate a sphere, 

as seen in Figure 5(b). Thus the motion of Te(3) does appear more 

restricted, as would be expected with the additional bonding. The 

presence of only this hydrogen bond from the en molecule is in turn 

presumably responsible for the relatively large positional uncertainties 

and thermal parameters found, especially for the carbon atoms. There 

is no evidence for more than one conformation in the crystal, but 

random disorder and true thermal motion may both contribute. 

Table VII lists bond lengths and angles for a number of species 

which may be compared with the tritelluride ion in this compound. The 

2— j_5 
first of these is the nominally Te^ ion found in In^Te^ . Although 

this ion is formally the same as the one in this report, a close 

examination shows substantial differences. The two Te-Te bond lengths 

O 
are essentially identical in In^Te^ (the actual difference is 0.012(8)A) 

O 
but are 0.131(8)A greater than the average of those in the crypt salt. 
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Table VII. Bond lengths and bond angles in some catenated compounds 
of group VI elements 

Species Te 
2-

lea^- se/- s/-

Bond 

Length(s) 
O 

(A) 

Bond 

Angle C) 

Compound 

2.69(5) 2.831(6) 2.40(5) 2.076(5) _a 

2.720(4) 2.843(6) 

113.1(2) 100.1(2) 110(3) 114.9(4) 97^ 

(crypt K ), 

Te^-en ^"2^®5 BaSe, BaS, I-AICI, 
3 4 

Reference This work 15 12 11 13 

^ Not known. 

^ Average of 4 values. 

^ Based on nqr spectrum analysis. 

uare planar. 

based on nqr sj 

Not comparable as ion is square 
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Te Se S Teg^" Te^^"*" 

2.835(2) 2.373(5) 2.047(3)^ 2.70(1) 2.674(2) 2.286(4) 

2.663(2) 2.280(4) 

103.2(1) 103.1(2) 108.1(1)^ - _d _d 

Te trigonal- Sg MgTe^ Te^CAlCl^)^ Se^(HS20^)2 
Se 

78 79 80 81 18 82 
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This comes about because in the indium compound the tritelluride unit 

has indium neighbors O.IA closer to each end than the Te-Te bond length 

O 
(2.837A). In fact the length of the bonds in the indium compound, as 

well as the Te-Te-Te angle, are virtually the same as in the element, 

78 
where the bond order is less than single. When these two factors are 

considered together with the fact that = r^^ it appears that the 

bonding between the Te^ unit and the indium is stronger than that within 

2-
the Te^ unit. This is in sharp contrast to the Te^ ion in the crypt 

salt which has single bonds within the ion and, besides the previously 

mentioned hydrogen bond to an en molecule, only electrostatic bonding to 

the other ions. 

Another isoelectronic species is the I^"*" ion. This species has not 

been structurally well-characterized but the 97° bond angle estimated 

on the basis of its nqr spectrum^^ is distinctly smaller. Although 

some doubts could be raised regarding the simple bonding model used in 

analysis of the latter the trend may be real as shows a comparable 

angle. Some opening of the angle would be expected for the higher 

2-
charged Te^ 

2- 2- 2-
Both angles and distances in Te^ , Se^ and are reasonable 

when account is taken of the lower precision of the Se^^ (powder) data. 

In the stable elemental forms selenium and tellurium are isostructural, 

consisting of infinite helixes of atoms parallel to the trigonal c axis. 

2-
The ions may be considered as three-atom pieces of that chain, with 

the bonds at both ends reduced to complete the lone pair and furnish the 

2-
charge. In the same way, could be formed from part of a Sg ring. 
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A comparison of bond angles between the ions and the elements indicates 

considerable consistency. The ion has an angle 7° greater than Sg, 

2- 2-
Se^ , about 7 ± 3° greater than in elemental selenium, and Te^ , 10 

greater than in the element. The bond lengths present a different story 

2- ° 
however; the bond length in is only 0.03A greater than Sg, for 

O 
selenium, the difference is less than the standard deviation of 0.05A in 

2-
the bond length in Se^ , but with tellurium the average of the bond 

2-  °  
lengths in Te^ is 0.129(5)A less than in the element. This contraction 

is not really surprising when the structure of elemental tellurium is 

considered in more detail. Each atom therein has in addition to its two 

O O 

nearest "bonded" neighbors at 2.835(2)A, four other atoms 3.495(3)A 

away in other chains, close enough to suggest some form of bonding inter-

83 
action which completes a distorted octahedron around each atom. This 

secondary bonding, present in tellurium but virtually absent in the iso-

structural selenium, is not surprising considering the more metallic 

character of tellurium and appears to lower the bond order within the 

helical chain with a resulting increase in bond length. 

2- 2-
Two other bonds to which Te^ can be compared are those in Te^ 

2+ 
and Te^ . The former (isoelectronic with I^) is quite comparable in 

distance to that in MgTe^ (2.70(1)A) and not greatly different in MnTe^ 

° 84 
at 2.74(3)A. The Letratelluriu!ii(2T) cation has a bond order of 1.25, 

and appropriately contains bonds 0.038A shorter than the presumed single 

2- 2- ° 2+ 
bonds in Te^ • For selenium, Se^ has bonds 0.12A longer than Se^ , 

but the large standard deviation for the anion makes it impossible to 

tell if the magnitude of this difference is significant. 
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+ 2-
The tetrabismuthide ion in (crypt K Bi^ 

The final atomic positional and thermal parameters appear in 

2-
Tables VIII and IX, while important distances and angles in the Bi^ 

anion and (crypt K"*") cation are given in Table X. Additional cation 

distances appear in Table XI while the remaining angles as well as the 

observed and calculated structure factors appear in reference 29. 

2-
The most significant feature of this structure is the Bi^ ion, 

shown in Figure 6, which is the first discrete anionic cluster of 

bismuth isolated, although cationic clusters Bi^^"*", Big^^ and Bi^^^ are 

known.As noted earlier, Zintl's original assignment for this ion, 

3-
Bi^ , was based on a substantial rounding of analytical results and 

on analogies with other Group V elements while the analysis appeared to 

indicate the correct Na^Bi^ stoichiometry. Although the only point 

symmetry required for the ion is C^, which with two unique atoms pro­

duces a rigorously planar configuration, the anion does not vary 

• 4h 
2+ 2+ 

isoelectronic (in valence electrons) ions Te^ and Se^ , both of which 

are also onlv reauired to have C. symmetry in their structures but come 
1 • 

18 82 
within experimental error of possessing symmetry. ' 

The remarkable red-green dichroic effect observed for the solutions 

9 
from which these crystals grow and earlier noted by Zintl et al. for 

other NH^ solutions may arise from an uneven response of the human eye to 

colors at opposite ends of the visible spectrum. The characteristic 

intense green color of thin layers presumably arises from transmission 

in both the red and the blue end of the visible spectrum, whereas thicker 
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Table VIII. Final positional and thermal parameters for the non-disordered atoms 

of (crypt 

Fractional Coordinates Atomic Temperature Factors 

Atom X y z Bll' ^22 ^33 012 ^13 ^23 

Bll 0.1952(1) 0.8575(1) 0.0011(1) 14.6(1) 17.5(2) 14.3(1) - 4.6(1) 0.9(1) 3.5(1) 

B12 0.0216(1) 0.0671(1) 0.8454(1) 17.1(2) 17.0(1) 12.5(1) - 6.6(1) 1.0(1) 3.6(1) 

K 0.3215(6) 0.3243(6) 0.4100(6) 14.6(8) 11.9(6) 9.2(5) - 5.7(5) 1.8(5) 0.1(5) 

N1 0.302(3) 0.305(3) 0.145(2) 22(4) 18(3) 12(3) -11(3) 5(3) - 3(2) 

04 0.328(3) 0.518(2) 0.291(1) 36(5) 14(2) 7(1) -13(3) 2(2) 2(1) 

C5 0.245(5) 0.639(4) 0.342(4) 33(8) 18(5) 17(5) -12(5) 8(5) - 2(4) 

C6 0.284(3) 0.644(3) 0.472(3) 24(5) 11(3) 12(3) - 9(3) - 0(3) 4(2) 

07 0.269(2) 0.563(1) 0.535(1) 18(2) 10(1) 10(2) - 2(1) 4(1) - 0(1) 

C8 0.313(4) 0.573(3) 0.663(3) 27(6) 10(3) 10(3) - 8(3) 3(3) - 1(2) 

C9 0.275(3) 0.486(2) 0.726(2) 15(3) 12(3) 9(3) - 4(2) 0(2) - 3(2) 

NIO 0.337(2) 0.347(2) 0.683(2) 15(3) 14(3) 10(2) - 6(2) - 0(2) 0(2) 

^ X 10^. 
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Table VIII. Continued 

Fractional Coordinates Atomic Temperature Factors 

Atom X y S* Bll' ^22 ^33 ^12 ^13 ^23 

Cll 0.282(4) 0.278(3) 0.722(3) 23(5) 15(4) 12(3) -11(3) 5(3) 0(3) 

012 0.146(3) 0.310(3) 0.657(3) 13(3) 17(4) 11(3) - 1(3) - 2(2) 2(3) 

013 0.167(2) 0.259(2) 0.526(1) 15(2) 16(2) 9(1) -11(2) - 1(1) 3(1) 

014 0.055(3) 0.264(4) 0.457(4) 9(3) 28(6) 24(6) -12(3) - 5(3) 13(5) 

015 0.088(3) 0.225(4) 0.320(4) 12(4) 19(5) 16(5) - 4(3) - 4(3) - 5(4) 

016 0.100(2) 0.321(3) 0.283(2) 22(4) 28(4) 11(2) -17(3) - 3(2) 0(2) 

C18 0.176(7) 0.298(8) 0.099(4) 4(1) 5(1) 13(5) - 3(1) - 4(6) 7(7) 

019 0.411(6) 0.176(5) 0.099(4) 32(9) 27(7) 14(5) -13(7) 4(5) - 7(5) 

021 0.517(2) 0.106(2) 0.289(2) 17(3) 18(3) 15(3) - 3(2) 4(2) - 1(2) 

022 0.640(6) 0.083(3) 0.343(4) 33(9) 14(4) 17(5) 12(5) 9(6) - 4(4) 

023 0.654(3) 0.065(3) 0.470(4) 13(4) 11(3) 20(5) - 7(2) 2(3) - 2(3) 

024 0.561(2) 0.177(1) 0.538(2) 14(2) 6(1) 17(2) - 0(1) 0(2) - 0(1) 

025 0.568(3) 0.162(3) 0.665(2) 17(4) 16(3) 8(2) - 7(3) 0(2) 2(2) 

026 0.484(3) 0.291(2) 0.727(2) 14(3) 9(2) 11(3) - 3(2) 2(2) - 2(2) 
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Table IX. Final positional and thermal parameters for the disordered 
carbon atoms 

Atom X y z B 

°2 
C2a 0.371(6) 0.378(6) 0.113(6) 5(1)A 

C2b 0.282(5) 0.430(5) 0.096(5) 4(1) 

C3a 0.294(8) 0.505(6) 0.158(7) 6(1) 

C3b 0.37(1) 0.491(9) 0.149(9) 9(2) 

C17a 0.112(7) 0.248(7) 0.162(7) 6(1) 

C17b 0.070(8) 0.333(8) 0.143(7) 6(1) 

C20a 0.559(9) 0.117(8) 0.171(8) 8(1) 

C20b 0.496(7) 0.077(7) 0.163(7) 6(1) 

All atoms at 0.5 occupancy; see text. 
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Table X. 
2- + 

Imjjortant distances and angles In Bi^ and (crypt K ) 

Anion 

Distances Angles 

Atom 1 Atom 2 A Atom 1 Atom 2 Atom 3 O 

Bil B12 2.9)6(2) Bll B12 Bil'G 89.85(6) 

Bll B12'G 2.941(2) B12 Bil B12' 90.15(6) 

DU Bll' 4.150(3) 

812 B12' 4.151(3) 

Difference Between Distances Difference Between Angles 

Distance 1 Distance 2 
O 
A Angle 1 Angle 2 0 

Bll - B12 Bll - B12' 0.005(3) Bil - B12 - Bll' Bi2 - Bil - B12' 0.29(12) 

Bll - Bll ' B12 - B12' 0.011(4) 

^ Primed atoms are related to unprimed atoms by inversion through the origin. 
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Table X. Continued 

Cation 

Distances 

O 

Atom 1 Atom 2 A 

K NI 2.90(3) 

K 04 2.83(2) 

K 07 2.78(2) 

K NIO 2.99(3) 

K 013 2.78(2) 

K 016 2.76(3) 

K 021 2.80(3) 

K 024 2.78(2) 

Angles 

Atom 1 Atom 2 Atom 3 O 

NI K NIO 179.3(8) 

04 021 016 60.0(7) 

04 016 021 60.2(7) 

016 04 021 59.7(7) 

07 013 024 59.1(5) 

013 024 07 61.5(5) 

024 07 013 59.4(5) 

Angle Between Planes 

Plane 2 

07-013-024 

Plane 1 

024-016-021 

O 

0.7(7) 
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Table XI. Additional cation distances 

Itom 1 Atom 2 d(A) Atom 1 Atom 2 d(A) 

NI C2b 1.54(6) 021 C22 1.38(8) 

NI C2a 1.52(8) C22 C23 1.43(6) 

C2b C3b 1.56(13) C23 024 1.44(4) 

C2a C3a 1.39(9) 024 C25 1.42(4) 

C3b 04 1-66(10) C25 C26 1.49(4) 

C3a 04 1.47(8) C26 NIO 1.54(4) 

04 C5 1.37(5) C2b C2a 0.92(7) 

C5 C6 1.46(6) C3b C3a 0.88(11) 

C6 07 1.34(4) C17b C17a 0.93(8) 

07 C8 1.45(4) C20b C20a 1.03(11) 

C8 C9 1.56(5) C2b C3a 1.09(8) 

C9 NIC 1.48(4) C2a C3b 1.36(11) 

NIC Cil 1.39(4) 04 07 2.80(3) 

Cil Cl 2 1.52(5) 013 016 2.80(3) 

Cl 2 013 1.49(4) 021 024 2.83(4) 

013 C14 1.39(4) 04 016 4.26(4) 

C14 C15 1-57(7) 04 021 4.27(3) 

C15 C16 1.35(6) 016 021 4.24(4) 

016 C17b 1.56(8) 07 013 4.28(3) 

016 C17a 1.47(8) 013 024 4.19(3) 

C17b CIS 1.24(10) 07 024 4.17(2) 
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Table XI. Continued 

O 
Atom 1 Atom 2 d(A) 

O 
Atom 1 Atom 2 d(A) 

C17a CIS 1.45(9) 

CIS N1 1.52(7) 

N1 CI 9 1.51(6) 

CI 9 C20b 1.34(9) 

C19 C20a 1.65(11) 

C20b 021 1.41(8) 

C20a 021 1.50(9) 

N1 NIO 5.90(4) 
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Fi&ure 6. View down 1;he effective 4-fold axis of the 

ion in (ci-ypt . 
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layers could appear red because of the lower sensitivity of the eye to 

85 
blue. 

The bonding in as well as has already been examined. 

It is clear that the bond order based on molecular orbital treatment is 

1.25, with five filled bonding (a^^, ̂ 2g' ̂ u' ̂ 2u^ and two filled and 

substantially non-bonding molecular orbitals (e ) for the four edges. 
O 

This high bonding order gives the ion shorter Bi-Bi bonds (2.939A av.) 

c I o ®R7 Rft 
than in Bi^ where the bonds range from 3.078(6)A to 3.286(12)A ' 

o o gg 

or the polymeric Bil, where the range is 3.038(4)A to 3.058(4)A. 

Recently the phase Ca^^Bi^g was discovered to contain more or less 

90 
isolated Bi^ and Bi^ groups, and the latter appear to bear a definite 

2-
relationship to Bi^ . The unit cell contains four units of Ca^^Bi^^, 

O 
with 16 isolated Bi atoms, eight Bi^ groups (3.15A bond length), and 

O 
two Bi^ rings (with site symmetry). The Bi^ groups exhibit 3.20A 

o o 

Bi-Bi bonds compared with 2.94A in Bi^ and 3.07(x3) plus 3.53(x3)A in 

91 ° 
Bi metal. All 8 of the Bi^ groups are distributed 3.34A away from the 

Bi, unit so as to maintain D., symmetry, as is shown in the diagonal 
4 4h 

section through one Bi^ group shown in Figure 7. 

As a zeroth approximation the 88 electrons from the calcium might 

3-
be distributed by considering the isolated Bi atoms to be Bi , the Big 

groups to be Big^ anions, isoelectronic with I^, and the Bi^ rings to 

4-
be Bi^ anions, the least reduced of the lot. In this scheme, the two 

4-
additional electrons in the Bi^ group would go into the lowest anti-

86 
bonding pi orbital (bg^ ), which effect would reduce the bond order 

O 
from 1.25 to 1.0 and lengthen the bonds to about 3.05A. This distance 
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3. 15 

3. 20 

/ \ 
\ 

Figure 7. A [110] view of part of the bismuth substructure in Ca^^Bi^Q. 

The rest of the substructure, excluding isolated bismuth 

atoms, can be generated by rotation about the tetragonal 

cell's indicated 4-fold axis. All distances are in 

Angstroms. 
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4-
might also serve as a suitable approximation for singly bonded Big 

groups. The higher field of the calcium ions probably also serves to 

lengthen the bonds. 

Such an assignment of all the valence electrons from calcium of 

course represents an unlikely extreme even for a polar intermetallic 

phase, and there are several likely routes for delocalizing charge back 

onto these cations, a process which should also lengthen bonds in what 

in the limit were termed Bi^ and Bi^ ions. Each of the so-called 

4-
Big ions is surrounded symmetrically in a pi-like manner by four 

O O 
calcium ions at 3.25A in a plane which comes within 0.08A of including 

O 
the two atoms in Big, and these calcium atoms are in turn all 3.26A 

from two isolated Bi plus more Ca atoms. The first four calcium atoms 

have the same symmetry as and would be expected to withdraw some charge 

* 4— 
from both the IT and TT orbitals of the Big ion, in the same manner as 

86 
postulated for charge reduction of the square "anion" in Na^Hg^. 

4-
For the Bi, group, the " orbitals (a^ , e (non-bending), and 

4 Z.U g 

bg^) are all in a position to lose charge to a pair of calcium ions 

O 
immediately above and below the ring on the 4-fold axis (d^^_g^= 3.6A) 

or, perhaps even more likely in view of the remarkable geometry, into 

* 4- ® 
the O orbitals of the formal Big ion. The 3.34A separation between 

the Bi^ groups and 8 symmetrically disposed Big units certainly must 

reflect a significant interaction. The fact that no atoms approach 

close to the Bi^ square in or near its plane is consistent with the 

18 
earlier observation that this geometry provides a likely route for 

2+ 2+ 
donation of charge from basic anions into the Te^ and Se^ ions. 
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The above description offers at least an heuristic approximation 

of the bismuth-bismuth bonding in Ca^^Bi^g, recognizing the principal 

fact that sufficient localization is present to define some direct 

COvalent bonding even in a presumably conducting intermetallic compound 

such as this. While this model built up from a localized MO origin is 

only a crude description of the bonding in this compound, on going from 

90 
bismuth to the less metallic antimony in the isostructural Ca^^Sb^^ 

92 93 4-
and Yb^^Sb^Q and germanium in Ho^^Ge^^ the bonds within the and 

4-
units are found to shorten in comparison with the distance between 

the units as the localized ionic model appears to be more closely 

approached. 

+ 2-
The packing in (crypt K Bi^ 

All of the other compounds studied to date which contain dinegative 

2- 2- 2-
cluster anions, Sn^ , Pb^ and Te^ , adopt a hexagonal Bravais 

14 2-
lattice. In the Bi^ structure as well, the trigonal habit of the 

crypt in the presence of the relatively small anion so dominates the 

packing that the triclinic unit cell, two of which are shown in Figure 

8, still comes out with nearly hexagonal proportions and packing (a 

differing from b by 1.6%, a = B = 98®, and Y is only 1.4° from 60°). 

Likewise, the x and y coordinates of both nitrogen atoms and the 

potassium atom are all approximately 1/3, closely corresponding to a 

location on the three fold axis of a proper hexagonal cell. The gross 

14 
packing of the cell is quite similar to that illustrated earlier for 

(crypt Na*^2 Pb^^ save for the obvious addition of a three fold axis 
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Figure 8. Stereoscopic [llO] view of two unit cells of 

all comers of both cells are included. The 

(crypt Na^)2Pb^^ and (crypt Na^ïgSn^^ . 

+ 2- 2-
(crypt K • Th^ Bi^ anions at 

packing is essentially the same as in 
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to that anion (D^^) and a doubling of the c-axis, a second set of ions 

arising by a translation of c/2 and a 60° rotation. 

The cryptate cations in these compounds 

+ 2-
The two cryptated potassium cations in (crypt K Te^ are 

94 
essentially the same as dealt with in some detail elsewhere and will 

not be discussed at length here. Two variations are observed however; 

28 
first, a slight, but definite trend to generally longer bonds, and 

O 
second, a slight (0.04A = la) shift of the potassium atom towards one 

end of the ligand in the present symmetry-unconstrained crypt cations 

relative to those reported earlier with a two-fold symmetry axis normal 

to the N-K-N axis. 

This displacement is also observed in the crypt cation in 

+ 2-
(crypt K >2 Bi^ , only in this case the displacement is greater, 

O 
0.09A, or 3a, and the direction is towards the anion. Although no point 

symmetry is required for the cation, the potassium, nitrogen, and oxygen 

atoms have nearly three-fold symmetry, the two oxygen planes are paral­

lel, and the Nl-K-NlO angle is within la of 180° (see Table X). 

Although there is no difference in the final residual, the cation 

model involving the disordered carbons with more reasonable distances 

and thermal parameters (Tables IX and XI) is preferred to the one in­

volving greatly anisotropic atoms (Figure 3). The ordered but aniso-

O 
tropic model requires a carbon-carbon bond length of 1.29A (between C2 

and C3) while corresponding distances in the disordered model are 

O O 
1.39(9)A and 1.56(13)A. In the disordered model the two fractional 
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carbon chains (C2a-C3a and C2b-C3b) appear in an X configuration, perhaps 

to avoid what would be a short distance between these carbon atoms and 

the anion if the atoms adopted the normal arrangement. All of the 

disordered atoms except one (C2) are S to the nitrogen, a position where 

larger isotropic thermal parameters have been found previously and with 

the other compound in this work and were suspected to originate from 

17 26 
disorder. ' This disorder was resolved now because of its occurrence 

in a small cell of low symmetry which thereby yielded a larger ratio of 

observables per parameter. The disordered atoms are in the end of the 

O 
ion which is significantly (0.2A on the average) closer to the anion and 

O 
has the closest contacts to the anion, 3.79(10)A for C20a - Bil and 

3.99(5)1 for C5-Bi2. 
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THE ZIRCONIUM BICHLORIDES 

Prior to the work described In this dissertation all of the 

authentic powder patterns of zirconium dichloride could be explained 

either by a compound isostructural with 3R-M0S2 or one having a very 

Similar structure and the same size of unit cell, but only primitive 

symmetryIn this dissertation two additional variations of the 

slab type structure are described and evidence for a third discussed. 

The first of these variations has the same a axis length as 

SE^ZrClg, but the repeat period for the stacking of the slabs is six 

slabs instead of three so that the c axis is doubled. This variation 

has only been observed in single crystals and then only intergrown with 

the 3R variation. An even longer repeat in the stacking period, 

eighteen slabs, has been observed in both single crystals and powder 

specimens. Like the previous example, the a axis remains the same as 

in the 3R variation. 

Two low angle lines frequently appear which cannot be explained 

by any of the other stacking variations. These lines do fit a hexag­

onal unit cell with an a axis three times that of 3R-ZrCl2 and a 6-slab 

repeat sequence. 

Besides these, an entirely different zirconium dichloride is 

reported. This compound is a cluster compound of the MgX^2~type, as 

is Zr^Cl^^, and is isostructural with and (with one difference 

discussed below) Sc^C1^2*^^'^^ 
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The cluster compound Zr^Cl^^ 

This red compound has only been found in powdered products 

equilibrated at 650" and higher with the best material produced in 

isothermal equilibrations at 700° and initial compositions of ZrCl^ qq 

and ZrCl^ Because only powder data were available and because 

of the properties of 3 Laue symmetry the structure of this compound 

could not be refined once it was determined. The values for the posi­

tional parameters which appear in Table XII and the bond lengths derived 

from them which appear in Table XIII are only estimates arrived at by 

modifying the positions from Sc^Cl^g Co obtain bond lengths similar to 

those observed in Zr,ClT_.^^ Likewise the temperature factors are based 
O 10 

on the best chlorine isotropic temperature factors from Sc^Cl^g and the 

best zirconium values from Zr^I^^* 

The observed powder pattern, as well as the one calculated using 

the parameters given in Table XII, appear in Table XIV. As can be seen, 

there are some problems with the intensity match and with several 

unexplained lines. The two most intense lines are observed at about 

half of their calculated intensity, due to reciprocity failure. These 

lines are so much more intense than any of the others (101, the second 

most intense, is twice the intensity of 520, the third most intense) 

that any exposure long enough to bring out the weaker lines clearly over­

exposes the stronger. This was tested by comparison of the relative 

intensities of these two reflections and the reflections near them as 

measured by densitometer on films taken of the same sample with exposures 

of two and four hours. Although the intensities of the weaker reflec-
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Table XII. Estimated positional and thermal parameters for Zr^C1^2 

Atomic temp 
Fractional Coordinates factors (B) 

"2  
Atom X y z A 

Zr 0.1160 0.1592 0.3511 0.77 

CI 1 0.1742 0.0473 0.1677 1.50 

CI 2 0.4145 0.9762 0.1667 1.50 

Space Group R3 (No. 148) 

a = 12.973C1)A, c = 8.782Cl)A 

Table XIII. Estimated bond lengths for Zr^Cl 

Bond 
^^6^^12 

Distance (A) 

Zr-Zr 3.20 3.207(4) 

Zr-Cll 2.52 2.506(7) 

Zr-C12 Cendo) 2.56 

Zr-Cl2 Cexo) 2.79 2.588(5) 

From reference 30. 
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Table XIV. Powder pattern of 

hkl 
a 

o" ' ' o c 
CA) d (A) 

101 5.953 6.919 34^ 68 

110 6.505 6.487 23 31 

012 4.097 4.090 9 13 

211 3.826 3.823 10 12 

300 3.751 3.745 11 14 

202 3.486 3.460 2 0.2 

220 3.254 3.243 11 13 

122 3.0547 3.0525 11 14 

131 2.9390 2.9366 5 7 

2.8680 3 

113 2.6691 2.6682 7 12 

13-2 2.5431 2.5412 46^ 100 

321 2.4726 2.4732 10 9 

140 2.4521 2.4517 8 10 

2.4266 2 

042 2.3667 2.3661 9 9 

303 2.3067 2.3063 3 4 

2,2668 2 

Observed intensities are scaled so that ZI = ZI . 
o c 

b 
These reflections were overexposed beyong the linear range of the 
films: see text. 
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Table 

hkl 

232 

051 

22-3 

104 

241 

502 

511 

214 

24-2 

143 

152 

520 

134 

161 

125 

612 

351 

054 

523 

244 

I 
c 

14 

12 

11 

9 

4 

2 

1 

6 

6 

3 

33 

32 

2 

3 

2 

2 

1 

2 

4 

89 

Continued 

o o 

d (A) d (A) I 
o c o 

2.2239 2.2228 12 

2.1769 
2.1755 16 

2.1731 

2.1556 2.1547 14 

2.0917 2 

2.0642 2.0638 13 

2.0002 2.0003 4 

1.9661 1.9666 4 

1.9502 1.9503 2 

1.9115 1.9115 5 

1.8796 1.8796 7 

1.8349 1.8335 5 

1.7991 1.7990 30 

1.7944 1.7948 29 

1.6797 1.6816 3 

1.6221 1.6230 6 

1-5983 1-5961 2 

1.5785 1.5788 3 

1.5706 1.5703 2 

1.5330 1.5327 7 

1.5258 1.5262 4 
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Table 

hkl 

35-2 

710 

262 

006 

235 

44-3 

630 

173 

27-2 

811 

53-4 

633 

624 

37-1 

372 

912 

526 

2 

4 

16 

5 

5 

2 

5 

5 

3 

2 

4 

5 

14 

4 

3 

16 

17 

90 

Continued 

d,(A) dc(A) lo* 

1.5059 1.5074 10 

1.4889 1.4881 9 

1.4683 1.4683 15 

1.4638 1.4637 4 

1.4510 1.4514 4 

1.4184 1.4185 5 

1.4151 1.4155 5 

1.3767 29 

1.3262 1.3265 6 

1.3104 1.3101 3 

1.3004 1.3005 2 

1.2961 1.2957 3 

1.2738 1.2745 11 

1.2705 1.2706 13 

1.2514 1.2511 5 

1.2155 1.2147 4 

1.1374 1.1375 12 

1.1352 1.1354 10 
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tiens varied, as expected, the two intense reflections were saturated 

and overexposed in both. This is a clear indication of reciprocity 

failure. 

There are also five lines in the powder pattern which do not 

correspond to any lines expected for this, or any other known zirconium 

chloride. Four of these lines are relatively weak (I^ from 2 to 3), 

but one is fairly intense (1^ = 29) and its presence is an unresolved 

problem. An unidentified phase is presumably responsible. Besides 

these, the original powder pattern also had several other unexplained 

lines, but these lost intensity much more rapidly than the cluster lines 

when the sample was exposed to air and were thus proven to be impurity 

derived. 

As mentioned before, this compound is isostructural with Zr^I^^ 

3+ 
and, if the isolated Sc ion is ignored, Sc^Cl^^. This structure is 

unique among the known clusters in having all of the halide ions 

brideine the edges of the M, octahedron. Half of the halide ions are 
- ~ o 

triply bridging as they also occupy exo sites at the corners of other 

metal octahedra.^^ In many other cluster compounds, such as Zr^Cl^^, 

these exo positions are occupied by halides which only bridge between 

clusters. 

Like Zrgl^2» this compound has twelve bonding electrons in the 

metal octahedron. According to the bonding scheme developed by Cotton 

95 
and Haas this should result in two unpaired electrons in a cluster 

T^g orbital, and produce a paramagnetic compound. has proven to 

96 
be diamagnetic however, and ZrgC1^2 probably behaves likewise. 
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The molecular orbital scheme proposed by Cotton and Haas was 

arrived at with tantalum as the metal in the M^X^2 cluster and may not 

be completely valid for zirconium, although the diagram indicates no 

important ordering changes occur over a wide range of bond lengths. 

If this ordering is accepted for 0^ symmetry, there are two distortions 

observed which lower the symmetry and could serve to alter the molecular 

orbitals so that twelve electrons produce a filled highest occupied 

molecular orbital. 

The first of these is a slight, although in Zr^I^^' crystal-

lographically significant, distortion of the cluster from perfect 

octahedral symmetry. The second, and greater, distortion is brought 

about by the non-equivalence of the twelve bridging chlorines which 

give the cluster a 3 environment, for a larger effective symmetry loss. 

The structure of 3R-ZrCl„ „ 
2 . 0  

The atomic positional and thermal parameters for SR-ZrCl^, q appear 

in Table XV. The bond lengths, angles, and other important distances 

appear in Table XVI with the observed and calculated structure factors 

in Table XVII. 

In this structure, as in the similar dichalcides,^^ all of the atoms 

occur on the three-fold axes located at (0,0, z), (2/3, 1/3, z) and 

(1/3, 2/3, z). 

Because all of these lines lie in a common plane (110), that plane 

shows the contents of the unit cell. A (110) section of SR-ZrCl^ appears 

in Figure 9. This method will be used in all of the representations 

of slab-type compounds in this dissertation. 



www.manaraa.com

Table XV. Atomic parameters for SR-ZrClg 

Atom 
a 

z  Bll ^22 ®33 <3 »23 

Zr 0.0 0.41(7) 0.41 1.02(9) 0.20 0.0 0.0 

Cll 0.2449(3) 0.72(14) 0.72 1.1(2) 0.36 0.0 0.0 

C12 0.4220(3) 0.75(14) 0.75 1.2(2) 0.38 0.0 0.0 

All atoms are on the 3a position and have x = y = o. 

° 2  
Anisotropic temperature factors are In units of A and of the form exp [- 1/4 

2 *2 2 *2 2 ''•'2 * * * * „ * , 
ha + «22 Kb ^ -f- c + 28^% hk a b + 26^^ hS, a c + ZBgg k& b c )]. 

For this special position B^^ and B^^ are not Independent, B^g ~ ^'^12 ~ ^11' 

I^or this special position B^^ = = 0. 



www.manaraa.com

94 

Table XVI. Interatomic distances and angles for 3R-ZrCl 
2.0 

ICA) Notes 

Zr 

Zr 

Zr 

Zr 

Zr 

Zr 

Cl 1 

Cl 2 

Cl 1 

Cl 1 

Zr 

Zr 

Zr 

Cl 1 

Cl 2 

Cl 1 

Cl 1 

Cl 2 

Cl 2 

Cl 2 

3.3819(3) 

6.7479(3) 

7.5480(4) 

2.598(4) 

2.501(4) 

4.746(6) 

3.3819(3) 

3.3819(3) 

3.431(7) 

3.603(6) 

Closest Zr approach 

Nearest Zr in next slab 

Second nearest Zr in 
next slab 

Bonding to coordinating Cl 

Bonding to coordinating CI 

Nearest CI in next slab 

Translation 

Translation 

Within slab 

Between slabs 

Angles 

Atom 1 

CI 1 

CI 1 

CI 2 

CI 1 

Vertex 
Atom 2 

Zr 

Zr 

Zr 

Zr 

Atom 3 

CI 2 

CI 1 

CI 2 

CI 2 

in. 
82.6(1) 

81.2(1) 

31.1(1) 

135.88(4) 



www.manaraa.com

95 

Table XVII. Observed and calculated structure factors (x 10) for 
SR-ZrClg 

H = C 2 8 568 538 

K L FC FC 2 1 1 393 398 

0 3 52 1 946 2 14 367 3 84 

0 6 1 1 5 1 1 g 2 1 7 4 77 539 

0 9 80 7 966 2 20 291 291 

0 I  2 979 114: 3 1 3 64 3 56 

0 1 5 383 34 8 3 4 485 506 

0 1 8 190 159 3 7 514 510 

0 21 653 578 3 10 287 306 

0 24 513 49 7 3 13 2 79 281 

0 27 1 06 98 

1 2 662 767 M = 2 

X 5  91 7 1276 < L FO FC 

1 8 652 82 3 0 2 551 570 

1 1 1 579 578 0 5 798 933 

1 1 4 54 6 528 0 8 6 36 642 

1 I  7 722 71 6 0 1 1 531 467 

1 20 418 37 6 0 14 4 77 443 

I  23 295 293 0 1 7 586 6 16 

1 26 315 302 0 20 3 24 329 

2 I  557 580 0 23 264 258 

2 4 765 82 2 1 1 515 474 

2 7 819 809 1 4 694 6 75 

2 1 0 525 46 8 1 7 662 6 74 

2 I  3 447 418 1 10 4 14 398 

2 1 6 551 61 0 1 13 372 361 

2 19 421 426 1 16 514 532 

2 22 273 272 1 19 354 375 

3 3 506 44 0 2 0 802 736 

3 6 125 1 1 4 2 3 4 26 383 

3 9 586 52 2 2 6 103 102 

3 1 2 682 668 2 9 4 78 458 

3 15 2 16 223 2 12 567 587 

3 1 e 1 07 1 1 0 2 15 162 1 99 

* 2 292 3G > 

4.  5  463 51 C 

K 

H = 

L 

3 

FO FC 
H = 1 0 0 893 849 

K L FO FC 0 3 495 440 

0 1 661 808 0 6 I  18 1 14 

0 4 795 1129 0 9 586 522 

0 7 809 1066 0 12 702 668 

0 1 0 566 583 0 15 232 223 

0 1 3 516 502 0 1 e 94 1 10 

0 1 6 698 715 1 2 363 350 

0 1 9 497 490 1 5 590 579 

0 22 328 •509 1 8 412 4 1 0 

0 25 266 269 1 11 304 306 

1 0 106 7 1277 

1 3 675 644 H = 4 

1 6 1 76 154 K L FO FC 

1 9 705 729 0 1 298 314 

1 1 2 847 906 0 4 423 447 

1 1 S 31 0 29 1 

I  18 126 137 

1 21 479 504 

1 24 446 438 

2 2 509 466 

2 S 82 2 769 
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Figure 9. A (110) section through several unit cells of SR-ZrCl^-

One unit cell is outlined with c vertical and [110] 

horizontal. The thermal ellipsoids are drawn at the 90% 

probability level. 
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Figure 10 shows (110) sections of several structures with open 

circles replacing the actual thermal ellipsoids of the anions and dots 

the cations. All atoms are in idealized positions. The sections in 

10a and 10b show the difference in appearance of the (110) sections 

for the obverse and reverse hexagonal settings of the same rhombohedral 

72 
structure. (The obverse is normally chosen, by convention. ) Although 

these two views appear to be different, mirror image, structures, in 

reality they only represent a difference of 60 in the choice of the 

hexagonal axes used to represent the rhombohedral cell. All of the 

metal atoms in both 10a and 10b have trigonal prismatic coordination. 

This can be recognized in a (110) section by the fact that the non-metal 

atoms are stacked directly above each other with the metal atom off to 

one side. The only other coordination possible in this type of structure 

is octahedral, which is demonstrated for the x in 10c. This arrangement 

can be recognized by the fact that the metal atom is located on the 

diagonal which joins the two non-metal atoms. In both cases the re­

mainder of the coordination sphere is formed by translations of these 

atoms. 

The row of letters immediately below Figure 10a points out another 

feature of these slab-type structures. Because there are only three 

pairs of X and y coordinates allowed for chis cype of structure (barring 

distortion which reduces the symmetry to less than C^)» each type of 

position may be labeled; 0,0 as a, 1/3, 2/3 as b, and 2/3, 1/3 as c. If 

the non-metal atoms are represented by capital letters and the metal 

atoms by lower case letters, the entire structure can be reduced to a 
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Figure 10. A set of schematic (110) sections illustrating various features of the slab-

type ZrClg" A) A section through a cell of SR-ZrClg using the conventional 

obverse orientation, for the hexagonal axes. Tlie letters beneath the figure 

(£, and c_) represent the three allowed sets of (x,y) coordinates. B) A 

section through a cell of SR-ZrCl^ with the hexagonal axes in the reverse 

orientation illustrating how different the same primitive cell appears when 

described with an equivalent axial system which is rotated by 60°. C) A section 

showing the proposed twinning mechanism in slightly substolchiometric 3R-ZrCl2. 

The presence of an atom in the octahedral hole indicated with the x causes the 

zirconium atom in the next slab to locate in the ^ location instead of the c^ 

location. This shift is equivalent to a 60" rotation about c and, if the 

stacking continues in the same manner, the next slabs are in the reverse orien­

tation relative to the coordinate system of the earlier slabs. D) A section 

through one unit cell of 6T-Zr^^^Cl2. The fractional atom in the octahedral 

hole is indicated by an x. 
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short string of letters. For the obverse setting of 3R-ZrCl2 the struc­

ture can be described as AcACbCBaB and the reverse setting as AbABcBCaC. 

It is immediately apparent that these can be shortened even further, 

the obverse to ACB and the reverse to ABC by only representing the outer 

atoms in each slab. 

The atom positions found in this study differ from those reported 

48 
by Troyanov and Tsirel'nikov by 4a, however this is not really a valid 

comparison. They report one less significant figure, and all of the 

values in this structure, if rounded to the same precision, differ by 

only one digit in the last place. The interatomic distances found here 

are likewise similar to theirs, but with smaller standard deviations. 

(The only exception to this is the interslab Cl-Cl distance which is 
O ® 

reported as 3.06A, but was found here to be 3.603(6)A. This short 

distance is probably a misprint however, not a real difference in the 

structure.) 

The trigonal prismatic coordination found in this compound, while 

relatively common among chalcides, is rare among halides. Only for 

Thl^ has a refined crystal structure shown trigonal prismatic coordi­

nation of a metal by halides, and in that structure half of the cations 

97 
have the more common octahedral coordination. While this coordination 

is rare for halides, it is clear that ZrCl^ conforms to the same criteria 

as the dichalcides with trigonal prismatic coordination. Like Mo it 

2 
is a d ion, and since the d-orbital degeneracy is split by a trigonal 

prismatic field into three sets of orbitals (in order of increasing 

energy) (d^^), e' (d^2 ' and e" Cd^^,d^^), this usually leads 
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2 98 
to a filled orbital (a^) in a localized bonding model. 

An empirical rule which has been devised by Gamble for dichalcides 

states that if rf/r- exceeds 0.49 for an MCh^ compound with a d^, d^, 

2 
or d metal ion that compound will have trigonal prismatic coordi-

99 
nation. For the purpose of this evaluation, r- = a/2 (the anions are 

assumed to be in contact) and r+ = d^_^- r-. Although this is a rather 

circular approach, it does serve to draw a sharp distinction between 

the dichalcides having trigonal prismatic coordination and those having 

octahedral coordination. When ZrCl2 is analyzed this way, the ratio 

found is 0.538, well above the minimum value required and even slightly 

above the hard sphere value of 0.527. 

Daake has reported ZrBrg can be indexed on a hexagonal cell with 

° ° 30 
a = 3.5257(2)A and c = 13.726(2)A. These dimensions are what would 

be expected for a 2-slab structure and the reflections observed agree 

with the extinctions expected for space group Pô^/mmc, the correct space 

erouD for both 2H -NbS„ and 2H.-MoS„. Unfortunately the ZrBr was oart 
- - a -d D ii - 2 

of a mixture and the quality of the intensity measurements made was such 

that no further conclusions as to the structure (2H^ or 2H^) could be 

made. If Gamble's rule is applied to this compound the ratio obtained 

2+ 
is 0.516 if the radius of Zr in ZrBrg is assumed to stay constant at 

_ 2+ 
its value in ^rClg and 0.551 if the radius of z.r is assumed to have the 

same apparent fractional increase as does Zr between ZrS2 and ZrSe2. 

This clearly indicates that the compound probably has trigonal prismatic 

coordination. This result is only partially in agreement with another 

report which gives ZrBr2 the 3R structure based on a nine line powder 
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pacLciTii (èj-giic lines of which, can be explained by the 2H^ structure) 

plus a partial examination of a single crystal,however ZrBr^ could 

well be polymorphic. 

Although the only point symmetry required for the trigonal prism 

surrounding the zirconium is the observed symmetry in ZrCl2 is 

O 
The two independent Zr-Cl distances differ by 0.003(6)A, and the 

angles between the central metal atom and each pair of end atoms are 

identical. 

The ideal reduced axial ratio (c/3a) for the 3R structure is 1.8165 

which is nearly achieved for the metallic SR-NbS^ (which as a d^ 

ion [(aj)^] lacks one electron of ZrCl^)• The isoelectronic [to ZrCl2 

2 
(ap ] SR-MoS^ is semiconducting and has a large c/3a ratio, 1.938. 

3R-ZrCl2j with c/3a = 1.9100, differs significantly from the ideal, but 

only 3/4 as much as does MoS^. Along with the axial ratios, the axis 

lengths themselves offer an interesting comparison. Although the crystal 
O 

radius of sulfur is slightly larger than that of chlorine (1.70A compared 

° 101 
with 1.67A), the a axis in ZrCl2 is longer than the same parameter in 

° ° 50 
either MoS^ C3.166A) and NbS^ (3.3303A). The c axis shows a slightly 

different pattern, with ZrCl^ still the largest, but with MoS^ being 

O O 
larger than NbS^ (18.41A and 17.918A respectively). 

The behavior of the two disulfides can be explained by the extra d 

electron in MoS^ which presumably increases the bonding between the 

metals reducing a, and at the same time producing a taller prism in an 

effort to keep the M-S bond length constant. While this hypothesis con­

curs with the observed similarity in the c/3a ratios for the isoelectron-
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ic ZrCl^ and MoS^, it does not explain the overall lattice expansion. 

This latter may be a result of the greater ionicity of the halide 

•-oapound. 

The structure of 6T-Zr,. CI. 

The atomic positional parameters for ôT-Zr^^^Clg appear in Table 

The values in the column marked z (ideal) are based on a unit 

cell having three unit cells of the 2H^ typefull /mmc symmetry, 

and the same Cl-Cl separation (slab thickness) as observed in SR-ZrClg. 

The actual symmetry is P3ml, with all of the atoms except Zr4 on the 

2d special position which restricts (x,y) to (1/3, 2/3) or (2/3, 1/3). 

Atom Zr4 is on the la position (0,0,0). 

Table XIX contains the observed and calculated structure factors 

for the partial set of reflections used in this determination. With a 

final R of 0.256, this structure cannot be considered fully refined but, 

given the limitations imposed on the data, is satisfactory. First 

among these limitations was the use of a partial data set obtained from 

the minority component of an intergrown crystal. This minority nature 

is quite apparent on comparing Figures 11 and 12. Figure 11 is a print 

of a Weissenberg photograph of a twinned crystal of SR-ZrCl^ showing 

the two out of three pattern of spots resulting from the superposition 

of the obverse and reverse reflection sets. Figure 12 is a Weissenberg 

photograph taken for a crystal similar to crystal IV. Here the extra 

spots generated by the six slab structure are clearly apparent with the 

most prominent being between the pairs of reflections seen in the previ­

ous figure. That these are of lesser intensity is readily apparent. 
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Table XVIII. Atomic positions for 6T-Zr^^^Cl^ 

Atom X y z(obs) z(ideal) 
° 2  

B(A^) 

Zrl 1/3 2/3 0.0815(2) 0.0833 0.3(2) 

Zr2 2/3 1/3 0.2490(2) 0.2500 0.4(2) 

Zr3 1/3 2/3 0.4181(2) 0.4167 0.5(2) 

Zr4^ 0.0 0.0 0.0 0.0 2.0 

Cll 2/3 1/3 0.0355(6) 0 . 0390 2.3(4) 

C12 2/3 1/2 0.1226(7) 0.1277 2.6(4) 

CI 3 1/3 2/3 0.1985(12) 0.2057 4.5(7) 

C14 1/3 2/3 0.2927(6) 0.2943 1.7(4) 

C15 2/3 1/3 0.3755(5) 0.3724 1.3(3) 

C16 2/3 1/3 0.4592(10) 0.4610 3.8(6) 

At 50% occupancy giving a composition of Zr^ ^gClg (or ZrCl^ g^). 
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Table XIX. Observed and calculated structure factors (x 10) for the 
reflections used in the solution of the structure of 
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Figure 11. A Weissenberg photograph (rotated about b) of a twinned 

crystal of SR-ZrClg. The spot pairs are h,0,£ and 

h,0,& + 1 generated by superimposing the obverse 

(-h+k+£ = 3n) and reverse (h-k+£ = 3n) rhombohedral 

reflection sets. 
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Figure 12. A Weissenberg photograph (rotated about b) of a crystal 

consisting of SR-ZrCl^ intergrown with 6T-Zr^^^Clg. 
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Also visible in this figure is the streaking along the festoon 

between pairs of 3R-spots. All of the 6T-containing crystals examined 

exhibited this streaking, with this streak intensity being typical. In 

fact, in crystal II the streak was nearly as intense as the spot. The 

best explanation of this streaking is the presence of a nearly continuous 

set of different stackings with different periods each occurring only 

enough to diffract a trace of radiation and all completely in register 

in the a and b directions. This observation is in close agreement with 

the powder data where continuous bands but not lines are found between 

the lines attributed to these reflections. 

A further limitation is imposed by the superposition of non-

equivalent reflections. If the crystal were single this would not occur, 

but it is very likely that the 6T component is twinned with such severe 

twinning occurring in the other (3R) component. In space group P3ml 

there are two equivalent possibilities for the selection of the a and 

b axes, with these possibilities differing by a rotation of 60 about 

the c axis. Depending on which choice is made, the same plane can have 

different indices (121 and 311 for example), but in either orientation 

these indices do not interconvert, for they are not equivalent by 

symmetry. The result of this is that in a crystal which is twinned by 

this 60° rotation each hk£ reflection is the average of the two non-

equivalent contributors. 

For the ST-Zr^^^Cl^ the structure could be solved only because the 

2Hj^ sub cell has higher symmetry for which these reflections are equiva­

lent. Because of this, all of the observed differences between this 
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structure and three cells of the 2H^ type represent the average of the 

two orientations, although the basic structure is correct. 

A Clio) 5ccti.cn for the 6T"~Zr^^^Cl2 structure appears in Figure lOd. 

As mentioned above, this structure is approximately equivalent to three 

unit cells of the ZH^-MoS^ type (for a total of six slabs) with an extra 

metal atom in an octahedral hole every six slabs. The ZH^-MoS^ structure 

is unique in several respects, not the least of which is that it is the 

2 
only slab-type structure which occurs exclusively for d conçounds. 

Besides this, it is the only structure having only trigonal prismatic 

coordination of the cations where every cation has two anion second 

nearest neighbors directly above and below it through the triangular ends 

of the prism (Thl^ also has this, but half the cations have octahedral 

coordination). It is also the only structure where an extra metal atom 

in an octahedral hole between slabs does not share at least one face of 

its coordination sphere with another metal atom. This latter is no doubt 

quite important in the structures occurring for the substoichiometric 

halide. 

Because of the degree of refinement in this structure nothing can 

be gained by comparing the individual interatomic distances within the 
O 

structure. The average Zr-Cl bond length in this structure is 2.57(2)A 

slightly, but not significantly, less than that observed in SR-ZrClg. 
O 

At 3.33(3)A the slab height also fits that description, and the interslab 

distance at 3.59C4)A is essentially the same as the 3R form. The reduced 

axial ratio at 1.9094 is virtually unchanged. 

The search for an alternative to the 3R structure for the substoi-
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chiometric zirconium dichloride originally began because of the presence 

of extra lines in the powder pattern of reduced samples. With the 

identification of Zr^Cl^^ the two variations described in the next 

section almost all of these lines could be accounted for. There was no 

evidence for any of the lines from the 6T structure which do not overlap 

those of 3R. 

The implication of this is that the 6T structure is present in 

larger single crystals, always intergrown with the 3R variation, never 

alone, but not in the microcrystalline powder samples, at least not 

enough to be visible to x-rays. This indicates that the conditions in 

which the transport grown single crystals containing ST-Zr^^^Cl^ form 

are distinctly different from those under which powders are produced 

in isothermal reactions. 

IST-Zr., . Cl„ and other variations 

Before now the longest repeat sequence characterized for any trigonal 

prismatic slab type compound was six slabs in GR-TaS^, where half the 

cations have octahedral coordination.^^ The only cell reported which is 

longer than this is a 12-slab supercell observed but not further 

102 
characterized and based on the 6R cell. No increase in a has ever 

been observed. 

Figure 13 is a print of a Weissenberg photograph showing many extra 

reflections along the hOil festoons. An enlargement of part of it appears 

in Figure 14. A careful examination of this film indicated that between 

many pairs of reflections which could be explained with some variation of 
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Figure 13. A Weissenberg photograph (rotated about b) of a crystal 

of 18T-Zr.^ Cl.. 
1+x 2 
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Figure 14. Enlargement of the upper right quarter of Figure 13 

showing details of the festoon with the spots observed 

for 18T-Zr,, Cl_. 
1+x 2 
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the 3-slab unit cell there were three additional spots. The relative 

center to center distances for an entire series of five spots were 

2:1:1:2. These proportions indicate that the three center spots were 

the center three from the series of five which would be expected in 

that interval for a unit cell with eighteen slabs in the repeating 

sequence. 

With this evidence for the existence of a compound with an 18-

slab unit cell, several previously unindexable lines in two powder 

patterns could be understood and lattice parameters obtained for this 

variation (which will be designated 18T in the absence of any symmetry 

O o 
information). These parameters are; a = 3.3820(2)A, c = 116.312(15)A, 

and c/18a = 1.9106. Although c is slightly greater (0.044(23)A) than 

six times the c axis in SR-ZrCl^, no conclusion can be drawn from this 

without knowledge of the phase purity of the specimen. 

While an investigation of this structure might have proven inter­

esting, it was unlikely to prove profitable enough to justify the effort 

it would entail. Because of the length of the c axis it would not be 

possible to resolve the individual reflections with an automated 

diffractometer, for even employing copper radiation the spot separation 

was less than the spot diameter. Data could be obtained using copper 

radiation with, film techniques and the large investment of time this 

entails, but there is no guarantee that the crystal was single. Further­

more, absorption would be a severe problem for a crystal this aniso­

tropic (width:thickness 2 10:1) and with 533 cm 

Four lines frequently appear together in powder patterns of 
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which cannot be fully explained by any of the varieties of ZrCl2 

described previously. One of these lines will index as 114 for a prim­

itive cell with the same dimensions as SR-ZrGl^ and another is almost 

within experimental error of 111 for this type of cell. The other two 

have 20 less than 003 (the lowest allowed reflection) from SR-ZrCl^ with 

one found very close to 003 from ZrCl. All three of these irregular 

lines can be indexed on a unit cell with a = 3ag^ and six slabs to the 

repeating sequence. For this cell the lowest line is 100, the second 

103, and the line near where 111^^ should be 333. 

While this may be sufficient data to define the lattice size (a = 

o o 

10.146A and c = 38.77A) of this supercell, given the demonstrated trends 

to polymorphism and supercell formation of the slab-type ZrCl^, there 

are so many possible arrangements for a cell of this size that specula­

tion on its structure is pointless. This structure is definitely 

distinct from the 6T structure, for no evidence was ever observed for 

an extension of a in 6T and when these four reflections (100; 103, 333, 

and 338) were sought in a crystal of 6T they were not found. 

The most significant feature of this superstructure is the ordering 

along a. This is the only evidence to date of ordering parallel to the 

slabs in any slab-type compound. 

There is not sufficient evidence to define either any additional 

orderings of the slab type compound or a different type of halide, 

although there is some scanty evidence for the existence of other com­

pounds. This evidence is the set of otherwise uninterpretable lines 

found in the original powder pattern of ZrgC1^2 which faded away on 
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exposure to air and a pattern obtained from material scraped from the 

walls of a tantalum tube used in a 700" to 750° transport reaction. 

In the six weeks this reaction ran, barely enough material was 

obtained for one powder pcttem, and even this meager amount was 

obtained only after scraping the entire interior of the tube, most of 

which was covered by tiny particles of a reflective material. Because 

the material was collected over such a wide temperature range it is not 

clear that the sample was single phase, although the distribution seemed 

even. Furthermore, it is not even clear that the material was trans­

ported to the walls of the tube; it may have been formed from a reaction 

occurring with material sticking to the walls from the initial filling 

of the tube. What is quite clear is that this material does not contain 

a significant amount of any known zirconium chloride or oxide, zirconium, 

tantalum, or tantalum oxide. 

Photoelectron spectroscopy of zirconium chlorides 

Table XX lists the peak maxima from the x-ray photoelectron spectra 

CXPS) of most of the zirconium chlorides. Ultraviolet photoelectron 

spectra were also obtained for most of these conpounds and served only 

to confirm the XPS results for the Zr4d and C13p bands. The slab-type 

dichloride spectra are not labeled as to polytype because of the diffi­

culty in obtaining powder specimens which are purely one polytype. 

However it is unlikely that the difference between polytypes would be 

detectable by XPS, the spectrum being almost entirely dependent on the 

bonding within the slab. However the valence portion of the spectrum 



www.manaraa.com

Table XX. X-Ray photoelectron spec tira of zirconium chlorides 

Level Zr" ZrCl Zr6Cll2 ZrClj ZrCl/ 
4 

Zr4d 0.8 oV 1.15 1.2 1.2 1.45 

C13p 6.4 6.55 6.5 6.50 6.55 5.0 

C13s 17.3 17.65 17.9 17.3 16.95 e. 

Zr3d^/2 178.8 179.4 180.15 180.1 179.9 182.15 182.8 

Zr3d3/2 181.2 181.75 182.7 182.5 182.6 184.45 185.2 

CI2P3/2 199.6 200.0 200.05 199.1 
199.55 

199.7 198.5 

C12Pl/2 201.15 201.5 201.65 200.7 
201.1 

201.25 200.1 

From reference 103. 

^ Composite from two specimens. Because of difficulties in standardizing, the spectrum was 
referenced by minimizing the differences in the core levels with ZrCl^ 

^ From reference 30. 

^ Not reported. 
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labeled ZrClg q was obtained on a specimen of 3R-ZrCl2. The values for 

ZrCl found here are within 0.1 eV of those obtained previously on another 

instrument^^ and so it can be assumed that the values for ZrCl, would 
4 

agree as well. 

The C12p (core) levels e^duLbit the expected trend to lower binding 

energy in ZrCl^, where they are formally more ionic, as compared with 

the relatively covalent ZrCl. The total shift is not large 1.5 eV) 

and the trend is not linear however, with most of the change coming be­

tween ZrClg and ZrCl^. A similar pattern is found in the C13p (valence) 

levels, with all of the reduced chlorides falling within experimental 

error of 6.5 eV and ZrCl^ falling 1.5 eV lower. No pattern is present 

for the C13s data. 

The ZrSd (core) levels show an interesting patuem, consisting of 

the expected monotonie increase in binding energy with oxidation state 

(a change of 4 eV between Zr ° and Zr^^). The rate of this change is not 

linear however, with just over half of the increase coming between ZrCl^ 

and ZrClg. This is the same gap over which the Zr4d (valence) band 

disappears and thus may correlate with the changes in conduction which 

occur as the material becomes more oxidized. 

These changes in conduction can be followed by examining the Zr4d 

band, in elemental zirconium (Zr", 4d^) this band is centered at 0.8 eV 

below the Fermi edge with a sizable density of states at that level, 

1.03 3 
as expected.^ In ZrCl (4d ) the band maximum is shifted to 1.15 eV 

below the Fermi level and the density of states at that level is lower, 

as expected. 
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The shift in position for Zr4d on going to the slab-type dichloride 

is negligible Cin fact, the 0.05 eV shown is about 1/6 of the estimated 

accuracy). What is significant is that the band in ZrCl^ is smaller, 

compared with C13p, and narrower. The change in size is entirely as 

expected, coming from a doubling of the number of chlorine atoms per 

2 
zirconium atom and a loss of one electron (to 4d ) for each zirconium. 

The narrowing of the band appears to be a consequence of a fundamental 

change in the conductivity with the density of states at the Fermi 

level dropping to nearly zero (see Figure 15). This indicates that 

slab-type ZrClg is either a very poor metallic conductor or, far more 

likely, a narrow gap semiconductor. The only way to determine this 

definitely would be to measure the single crystal conductivity as a 

function of temperature, and as yet all crystals obtained have been too 

small for such measurements. In either case, the electrons appear 

sufficiently delocalized at room temperature to give a metallic 

appearance to large single crystals. 

For the cluster type dichloride, Zr^Cl^^» the Zr4d band is shifted 

to slightly higher (0.2-0.3 eV) binding energy, which is reasonable in 

the light of the more localized metal-metal bonding in the clusters. 

Interestingly the Zr 3d levels have shifted by a slight, but not signif­

icant, amount to lower binding energy. If this shift is real it could 

represent an effect of inçroved local delocalization within the cluster 

in comparison with the slab structure. This is in line with the observed 

O O 
bond lengths of 3.20A(x4) in Zr^C1^2 compared with 3.382A(x6) in 

3R-ZrCl2. 
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Figure 15. The valence region of the XPS spectrum of slab-type 

ZrClg with an actual composition of ZrCl^ ^. This 

is a smoothed 440 scan spectrum obtained with mono-

chromatized AlK^ radiation (1486.6 eV). Vertical 

scale is arbitrary. 
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In the trichloride, the Zr4d band is unobserved. This is somewhat 

surprising, for while it would be expected to be smaller (relative to 

C13p) than in ZrCl^ by a factor of three, it should still be visible, 

unless it had also shifted to at least 3 eV higher binding energy. While 

the C13p band in ZrCl^ is wider compared with ZrCl^» (3.35 eV at h^yg 

versus 3.1 eV), a shift of 3 eV for Zr4d seems unlikely. Large crystals 

of this compound still show a luster and the compound is still a semi­

conductor, although there are definitely fewer electrons available for 

conduction in any unit volume of this compound. 

The sudden increase in the Zr3d binding energy is probably a result 

of this increase in electron localization in ZrCl^ relative to the more 

reduced chlorides. This would seem to be a very clear cut correlation 

from the XPS data alone; however, the fact that the closest Zr-Zr 

O 
distance in ZrCl^ is 0.315A shorter than the closest distance in 3R-ZrCl2 

C3.067A(x2) vs 3.382A(x6) clouds this argument. It would be interesting 

to have XPS data from Zr,Cl,_; unfortunately none of this compound was 

available. Based on the results here the Zr^ cluster would be expected 
o 

to dominate and with the delocalization within the cluster the Zr3d 

levels may be expected to occur around 180.5 eV (3d^y2) 182.9 eV 

The tetrachloride shows the same shift in core levels relative to 

ZrClg as ZrClg does relative to ZrCl. 

Figure 16 shows an interesting effect which is observed with the 

cluster dichloride Zr^Cl^^» namely, the apparent splitting of the C12p 

levels for the two different types of chlorines present. With barely 
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Binding Energy (eV) for Spectrum A 
204 203 202 20i 200 199 196 i97 i96 

204 203 202 201 200 199 198 197 
Binding Energy (eV) for Spectrum B 

Figure 16. C12p bands from the XPS spectra of Zv^Cl^Ak) and ZrCl_(B). 
0 IZ 2 

The shoulders in A at 199.1 eV and 201.1 eV are exactly 

what would be expected for the sum of two doublets, both 

the shape of B, offset by 0.4 eV. 
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1 eV shift between ZrCl and ZrCl^ it is surprising to find this separa­

tion C-0.4 eV) and doubly and triply bridging chlorines in the same 

cospound. 

It is also interesting that there is no apparent shift on reduction 

of ZrCl2 to near its reduced limit. A mixture of slab-type varieties 

with the same predominant component in each can be ruled out by the fact 

that in all cases the lines in the powder pattern were sharp and differ­

ent stoichiometries were clearly indicated for the samples. Another pos­

sibility arises from the fact that XPS is essentially a surface technique 

with most of the electrons coming from the top few unit cells. With 

materials that can be etched with an argon ion gun, deeper material can 

be examined by successively burning away layers and examining new sur­

faces which were originally buried, but the zirconium chlorides reduce 

instead of etching. It is entirely possible that in a sample with a bulk 

composition of ZrCl^ ^ the surface layer could be stoichiometric ZrClg g-

This could come about bv the oxidation of the surface layer by the ZrCl, 
H 

gas phase as it condenses on cooling. In this situation the surface lay­

er, as examined by XPS, would appear identical in both the stoichiometric 

and reduced samples. In the reduced material this surface would repre­

sent only an insignificant fraction of the whole, a fraction too small to 

observe by x-ray diffraction, and not be representative of the bulk. 

The narrow gap semiconductor behavior observed in slab-type ZrCl^ 

fits nicely into the previously observed progression in the conductivities 

of the zirconium chlorides from metallic ZrCl through the wide gap semi­

conductor ZrClg to the insulating ZrCl^. This same behavior also fits in 
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quite nicely with the isostructural chalcides, MoS^ and NbS^- As 

mentioned earlier, ZrClg exhibits a reduced axial ratio deviating from 

the ideal in the same direction as the semiconducting MoS^, although 

the difference is not as great. In this setting ZrClg, as a narrow gap 

semiconductor, fits nicely between the metallic NbS^ and N0S2. 

Although the XPS spectra of SR-MoS^ and SR-NbS^ are not available, 

104 
those of 2H-MoSg and 2H-NbSe2 are. Since the bonding within the 

slabs is so dominant, it is unlikely that the difference in packing has 

a measurable effect.The spectrum of NbSeg shows the expected 

metallic behavior, in agreement with other measurements and calcu-

lations^^^ done on this compound, and supporting the expectation of a 

similar spectrum for NbS^. Both previous measurements and calculations 

classify MoS^ as a semiconductor, and this is confirmed by the XPS 

results which show the highest occupied band Mo4d to be centered at 3 eV 

below the Fermi edge with at least a 2 eV gap between the top of the band 

104 
and the edge. The XPS results also show an overlap in binding energy 

between this band and the S3p band which is not predicted by the cal­

culations. This overlap, which is clearly not present in ZrCl2 (see 

Figure 15), is most likely a manifestation of the greater covalence of 

the dichalcide. 

Given the differences observed between the calculated and observed 

valence band structures for N0S2, any extrapolation of the calculated 

band structure to the isoelectronic but less covalent ZrCl2 can only be 

valid for the most general features. The splitting of the d orbitals 

such that the highest orbital is filled completely, resulting in non-
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metallic properties, is just such a result. This is the same result 

98 
as is obtained in a localized ligand field model but for different 

105 
reasons. 

One interesting conclusion drawn from the comparison of the ZrCl^ 

and MoS^ valence band spectra is that the conduction in the two compounds 

is fundamentally different. In MoS^ the observed overlap of metal and 

sulfur binding energies indicates a likely contribution to the conduction 

from the sulfur electrons. In ZrCl2 the lower covalency results in a 

separation of the Zr4d and C13p bands. At the same time zirconium, as 

a result of having a lower nuclear charge, has a greater d orbital 

extension than molybdenum. This is further accentuated in the case of 

these compounds by a lower formal charge in ZrClg compared with NoS^. 

Therefore, the metal-metal overlap in ZrCl^ is at least as good as the 

overlap in MoS^, even though the atoms are more widely separated and the 

sulfide ligands would be expected to slightly extend the molybdenum d 

orbitals. The result of this is that the conduction in ZrCl^ is due to 

a band which is nearly pure metal in origin. 

Intercalation 

Intercalation, the insertion of neutral molecules or ions into the 

van der Waals gap between slabs, is an important part of the chemistry 

of both the slab-type dihalides and the slab-type dichalcides. While 

the group V dichalcides (such as NbS^ and TaSe^) tend to substoichiom-

etry and intercalate a wide variety of materials,the group VI 

dichalcides (such as NoS^) only occur on stoichiometry and only inter-
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calate the alkali metals easily.Because ZrCl^ contains a core 

like MoSg but has a significant region of non-stoichiometry like NbS^ it 

is not clear which, if either, furnishes a better model for possible 

intercalation. Several attempts were made to intercalate this compound, 

all of which were unsuccessful. 

Direct reaction of ZrCl^ with anhydrous ammonia for 20 hours, three 

at -20° and 17 at ~ -^80*, produced NH^Cl and a slight degradation in the 

powder pattern of the unreacted ZrCl^» Pyridine condensed on ZrCl2 at 

0° reacted in minutes to produce a dark brown solution. Standing 

overnight had no effect on the appearance of either the solution or 

the solid at the bottom. Evaporation of the pyridine left a brown solid 

on the walls of the container. The only lines present in the powder 

pattern were those of ZrCl^ with no evidence of intercalation. 

The brown material formed lost pyridine rapidly if not in a 

pyridine-^rich atmosphere and no powder pattern was obtained. Based on 

its occurrence, color, and solubility in pyridine the brown product was 

most likely ZrCl2*2py which has been previously reported as the product 

108 
formed by the reaction of ZrCl^ with pyridine at room temperature. 

Its presence here suggests a disproportionation of the dichloride with 

the formation of either metal or monochloride in a poorly crystalline 

form. 

Attempts to intercalate both sodium and potassium from the liquid 

ammonia solutions were unsuccessful. In the former case much gas was 

evolved But no crystalline solid products were identified in the powder 
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pattern. In the case of potassium the only solid products found were 

NH.Cl and KCl. 
4 

Relationships between the dichlorides; the cluster dichloride 

The cluster dichloride, Zr^Cl , is the most enigmatic of the 
b IZ 

dichloride variations. It is structurally related to the rarely observed 

ErJCl^c, but therraodynamically it is difficult to relate to any of the 
O 

other compounds in the Zr-Cl system. 

Evidence for the presence of traces of the cluster dichloride has 

been found in numerous specimens in the form of the strongest lines from 

Zr,Cl._ powder pattern showing through the pattern of the predominant 
O iZ 

slab-type material, but only twice has Zr^Cl^^ been the predominant 

product. 

Several attempts were made to interconvert the slab and cluster 

dichlorides, with no clear results. Since both of the reactions in which 

the cluster compound had predominated had been carried out at 700° it 

seemed possible that this was the form of ZrCl^ stable at high tempera­

ture. If this was the case, a specimen of the cluster compound would 

be expected to convert to the slab-type at a lower temperature. However, 

when a specimen of the cluster compound was equilibrated for a month at 

625° the only change visible in the powder pattern was a slight sharpen­

ing of the lines. 

I'Jhen a mixture of the two, with a net composition of ZrCl^ ^, was 

equilibrated at 675° for six weeks no change was observed, but when this 

same material was combined with enough ZrCl^ to give a solid with a 
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composition of ZrCl^ ^ plus six atmospheres of ZrCl^ and was heated to 

700" for two weeks the result was a mixture of 3R-ZrCl2» ZrCl^, and a 

trace of ZrCl with one extra line that sight have been from Zr^Cl, j.. 
0 ij 

Another experiment was tried which involved a quantity of ZrgC1^2 

in one tube and a quantity of slab-type material, with a composition 

about ZrCl^ ^, in an outer, concentric tube, with the two sharing a 

common gas phase. What actually happened was the formation of a pinhole 

in the tube and the partial disproportionation of the entire contents. 

Interestingly the powder patterns revealed both the inner and the outer 

sections of the tube contained a mixture of cluster dichloride and 

monochloride. This suggests that the cluster may have been formed in the 

outer section by the disproportionation of the slab-type compound and 

that the cluster compound is more stable to disproportionation than the 

slab-type compound. Ifhet' 3r this stability is thermodynamic, resulting 

from lower vapor pressure over the cluster, or kinetic, resulting from 

the lack of an efficient mechanism for disproportionation, is unknown. 

Given just the data from these experiments it would appear that the 

cluster compound might be more reduced than the slab. However, the x-ray 

data for the cluster agrees too well with that calculated for Zr^CL, . 
D 12 

for the compound to be very substoichiometric, and the ratio of the area 

of the C13p peak to the Zr4d peak in the XPS spectrum of the cluster is 

virtually the same as that ratio in the slab compound. 

Another possibility is that one type of the dichloride is actually 

only metastable. It is nearly impossible that the slab-type compound is 

metastable considering the variety of conditions under which numerous 
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investigators have made this compound. It is possible that Zr,Cl,„ 
0 IZ 

is only metastable, but no data indicate this directly. 

Tne final possibility is that this is an isçurity stabilized 

phase. This is unlikely however as the XPS spectrum showed only 

zirconium, chlorine, oxygen, and carbon to be present in significant 

amounts. Either of the latter two could be the stabilizing impurity, 

but given the knowledge that the specimen had been handled several 

times prior to taking the spectrum it is more likely that those represent 

surface impurities. Given the clear evidence that the zirconium is 

divalent it is also unlikely that any divalent anionic impurity is 

present in a significant amount. 

Thus, the relationship between the slab and the cluster dichlorides 

must remain undefined at this time. 

Relationships among the slab dichlorides 

This investigation began as an attempt to explain the non-stoichiom-

etry of the slab-type zirconium dichloride. With the results described 

and discussed in the previous sections this can largely be accomplished. 

The results indicate that jR-ZrClg only exists in a rather narrow 

range near stoichiometry. Within this range truly single crystals only 

exist right on stoichiometry. If symmetry is to be maintained, there is 

only one site available for the insertion of extra metal atoms, the 

octahedral hole between the slabs located at CO,0,5/6) (and two other 

equivalent points). In all of the chalcide reports, including a recent 

109 
single crystal study of ^2,+x^2' substoichiometry is achieved by a 

fractional occupancy of this site. 
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In 3R^ZrCl^ occupancy of this site would result in 3.23A Zr-Zr 

distance, a distance wîiich would have to be accompanied by some form of 

interaction. Since a bonding interaction would distort the slab it is 

likely that the interaction is at least partly repulsive, and since 

repulsive interactions are avoided whenever an alternative is available 

an alternative accommodation for the extra atoms would seem favored. 

Figure 10c shows such a mechanism. In this figure it can be seen 

that the stacking starts out as the rhombohedral obverse form. At an 

octahedral hole between slabs an extra atom, indicated by the x, is 

inserted. In the next slab the trigonal prism which is expected to hold 

the metal atom is vacant and that atom instead occupies the adjacent 

trigonal prism, which is equivalent in all ways except for the lack of 

sharing of a face with the octahedron. From this point the stacking 

continues as before, only with this slight shift which is equivalent to 

a rotation of 60° in the orientation of the rhombohedral coordinate 

system relative to the hexagonal, and the stacking appears to have the 

reverse rhombohedral orientation. 

This mechanism produces two effects. The first gives a minimum 

metal-metal distance of 3.77A for an atom in an octahedral hole between 

the slabs where the stacking slip occurs. Two neighbors at this distance 

share opposing edges of the octahedron with it. The second effect is a 

twinned crystal. Actually in any given crystal there may be many such 

changes in the stacking, but regions of the crystal separated by two 

changes will be in the same relative orientation as they would with no 

changes so only two types of regions are generated and the crystal 
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appears twinned. It is the frequent observation of such twinned 

crystals, generally growing in the region just hotter (more reduced) 

than that where the untwinned SR-ZrCl^ crystals were found, that 

supports this mechanism for absorbing small amounts of extra metal. 

Although, this essentially random distribution model will allow 

the absorption of small amounts of extra metal, some concentration limit 

will be reached at which the extra metal atoms begin to interact with 

each other, and develop a periodicity. As described earlier, three 

larger unit cells are observed, and of these, IST-Zr^^^Cl^ appears to 

be the best candidate for a simple interstitial ordering. 

The fact that this compound has only been observed in samples 

equilibrated at over 700° and cooled rapidly (in comparison with the 

multi-week periods needed to approach equilibrium) suggests that it may 

be only metastable at temperatures below 700°. From the degree of tube 

bulging it is clear that at these temperatures 18T has a tetrachloride 

partial pressure of > 5 atm over it. Above 725° the dissociation 

pressure climbs rapidly, to over 30 atm at 800° based on the degree of 

tube bulging and the amount of gas generated by a sample which had 

completely dissociated to ZrCl and ZrCl^ before it was quenched from 

800°. 

In the series of isothermal squilibrations in which powder pattern 

evidence of 18T was found the 18T was only observed in samples just 

slightly reduced from ZrClg q in composition. This gives its composi­

tion limits as approximately ZrCl^ to ZrCl^ with the upper limit 

presumably in equilibrium with, twinned SR-ZrCl^ Ct-3R). 
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The fact that ST-Zr^^^Clg is found intergrown with t-3R is a 

strong indication that some variation, probably 18T, forms at high 

temperature and on cooling aisproportionates by ionic diffusion and 

slab slippage to t-3R at its reduced limit and 6T at its oxidized 

limit. If this disproportionation temperature is high enough to ensure 

good ionic mobility, which it seems to be, numerous regions of the 

crystal will grow into separate microcrystals (with dimensions on the 

order of 100 to lOOOA from the observed peak sharpness) with all of 

their axes in register. That this diffusion mechanism is not perfect, 

and that all of the atoms do not always end up in their equilibrium 

positions, is clear from the streaks observed along the festoons in all 

of the crystals of this type examined. 

As was noted earlier, the 6T variation is a superstructure of the 

2Ry stacking scheme, not of the 3R scheme. Because of this the 6T phase 

would be very apparent if a significant amount were present in a powder 

specimen. The only evidence found for the existence of this compound 

has been in intergrown single crystals. This could indicate that the 

kinetics of growth for this variation are quite poor in the isothermal 

equilibrations and favored in the single crystal disproportionation 

reaction described above. Alternatively, but less likely, it could 

indicate that the 6T variation has a minimum temperature for stability 

and in the powder specimens has undergone a phase transition which is 

usually blocked in the single crystal. If the latter is the case, it 

may also be true that when the fraction of the crystal which is 6T 

exceeds a certain value the phase transition occurs, and in the process 
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the crystal becomes multiple and as such, is rejected for extensive x-ray 

examination. This stabilization of the high temperature form by essen­

tially dissolving it in t^3R is analogous to the stabilization of the 

cubic (high temperature) form of zirconia by stuffing it with calcium 

or magnesium. This would serve to explain why in every good crystal 

containing 6T it is the minority component. From the available data it 

is impossible to tell which is correct. 

Exactly where the variation with the a' = a^^X 3 and c' = 6 slabs 

fits is difficult to say. It is present in many, if not most, sub-

stcichiometric powder specimens, but it is not clear in what quantity, 

and without this knowledge it will be difficult to determine more. 

Most non-stoichiometric compounds are disordered and display a 

definite variation in lattice parameters with composition which, once 

determined, furnishes a quick method of determining an approximate 

composition. While the lattice parameters of ZrCl2 vary with composition, 

the direction of the trend depends on the temperature of equilibration. 

At 650° and below both a and c expand with increasing interstitial 

concentration (reduction), as would be expected from the increase in the 

Zr-Cl bond length arising from the reduction of the zirconium. At 700° 

both, a and c increase with increasing interstitial occupancy for the 

composition region ZrCl^ g to ZrCl^ ^ and then contract for the region 

ZrCl^ g to ZrCl^ ^. At 725 no change is apparent. Although all changes 

mentioned are significant C5-6a) they are also quite small (< 0.5%). If 

these results indicate anything, it is that the arrangement of the inter­

stitial atoms varies as much with the temperature as with the composition. 



www.manaraa.com

135 

Daake reported an apparent stoichiometry range for zirconium 

dichloride of ZrCl, ^ ^ to ZrCl^ based on equilibrations done 
1.5 or 1.6 -1.75 

at 600* and below, Based on th.e results obtained for this dissertation 

the range is ZrCl^ , to ZrCl^ at 600°, At 650° the oxidized limit 

is about ZrCl. At 700° and above the range is from somewhere between 
If" 

ZrCl- _ and ZrCl. , and ZrCl_ although the single crystal data indi-
1 » D JL # V  ̂# V 

cates that there is a gap occupied by a two phase region somewhere in 

that range at temperatures just below 700°. 

Initially it was postulated that there was one compound, ZrClg, 

which by continuous variation in the occupancy of one, or more, inter­

stitial sites achieved a very large stoichiometry range with a fixed 

structure. This is the typical behavior of a true non-stoichiometric 

compound. Clearly, this is not the case. 

What is actually found is a series of ordered compounds, at least 

four in number and probably many more. At this point it is not clear 

if any of them are nonstoichiometric, but if any are, it is only over 

a limited range. The observed properties could just as easily be ex­

plained by a series of structures, each consisting of a slab-type sub-

cell with an extended ordered arrangement of interstitial atoms and each 

differing only slightly in composition and structure from ics neighbors. 

IVhile no exactly analogous system is known, both large degrees of 

polytypism in slab^type compounds^^ and compositionally closely spaced, 

structurally related phases^^^ are known in other systems. 
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FUTURE WORK 

Although there are still numerous polyanions of the post-

transition elements left to be found, it is very unlikely that anymore 

polytellurides or polybismuthides will be produced with cryptated 

potassium cations in ethylenediamine. A better possibility for 

2-
polytellurides is in liquid ammonia solution. Both reports of Te^ 

7 9 
described work done in liquid ammonia ' and this dissertation 

describes the synthesis of a compound from KgTe and excess tellurium 

in liquid ammonia with a powder pattern drastically different from 

+ 2— 
that calculated for (crypt K )2'^®3 'en. 

It may be possible to make other polybismuthides in ethylenediamine 

using sodium instead of potassium. An earlier report describes rose-

colored crystals, which were too soft to handle, produced using 

X9 
sodium and 2,2,2-crypt. . The use of 2,2,1-crypt, with its greater 

24 
affinity for sodium should lead to a more tractable product, and the 

identification of other polybismuthides. 

The composition range between ZrCl and ZrClg offers many possibili­

ties for new compounds or polytypes. A wide variety of polytypes for 

one compound is a common feature of the slab-type dichalcides, and the 

results in this dissertation indicate that it is for the slab-type 

dihalides as well. There is still a good possibility of finding other 

polytypes for ZrCl^, and it is not clear where the a = 3 x a^^, 6 slab 

variation fits in relation to the other types. Besides the dichlorides. 



www.manaraa.com

137 

the dibromides represent a virtually untapped but potentially very 

interesting area for investigation. 

Although all attempts at intercalation have been unsuccessful, it 

is still possible that a method might be found, possibly in the form of 

an easily oxidized organic compound, to put something between the slabs. 

With the results reported in this dissertation it was not possible 

to explain how the cluster compound Zr^Cl,_ relates to the other com-
o IZ 

pounds in the Zr-Cl system. This is a feature which it shares with 

Zr^Cl^^.^^ Fitting either, or both, of these compounds into their 

appropriate places in the Zr-Cl system and finding a method of producing 

these in quantity would open the door to a vast area of interesting 

chemistry. This area is the reactions of the cluster, in analogy to the 

wide variety of reactions known for the tantalum and niobium M^X „ 
0 IZ 

clusters. 
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